scholarly journals Spinal cord injury below-level neuropathic pain relief with dorsal root entry zone microcoagulation performed caudal to level of complete spinal cord transection

2018 ◽  
Vol 28 (6) ◽  
pp. 612-620 ◽  
Author(s):  
Scott Falci ◽  
Charlotte Indeck ◽  
Dave Barnkow

OBJECTIVESurgically created lesions of the spinal cord dorsal root entry zone (DREZ) to relieve central pain after spinal cord injury (SCI) have historically been performed at and cephalad to, but not below, the level of SCI. This study was initiated to investigate the validity of 3 proposed concepts regarding the DREZ in SCI central pain: 1) The spinal cord DREZ caudal to the level of SCI can be a primary generator of SCI below-level central pain. 2) Neuronal transmission from a DREZ that generates SCI below-level central pain to brain pain centers can be primarily through sympathetic nervous system (SNS) pathways. 3) Perceived SCI below-level central pain follows a unique somatotopic map of DREZ pain-generators.METHODSThree unique patients with both intractable SCI below-level central pain and complete spinal cord transection at the level of SCI were identified. All 3 patients had previously undergone surgical intervention to their spinal cords—only cephalad to the level of spinal cord transection—with either DREZ microcoagulation or cyst shunting, in failed attempts to relieve their SCI below-level central pain. Subsequent to these surgeries, DREZ lesioning of the spinal cord solely caudal to the level of complete spinal cord transection was performed using electrical intramedullary guidance. The follow-up period ranged from 1 1/2 to 11 years.RESULTSAll 3 patients in this study had complete or near-complete relief of all below-level neuropathic pain. The analyzed electrical data confirmed and enhanced a previously proposed somatotopic map of SCI below-level DREZ pain generators.CONCLUSIONSThe results of this study support the following hypotheses. 1) The spinal cord DREZ caudal to the level of SCI can be a primary generator of SCI below-level central pain. 2) Neuronal transmission from a DREZ that generates SCI below-level central pain to brain pain centers can be primarily through SNS pathways. 3) Perceived SCI below-level central pain follows a unique somatotopic map of DREZ pain generators.

2002 ◽  
Vol 97 (2) ◽  
pp. 193-200 ◽  
Author(s):  
Scott Falci ◽  
Lavar Best ◽  
Rick Bayles ◽  
Dan Lammertse ◽  
Charlotte Starnes

Object. Surgically created lesions of the spinal cord dorsal root entry zone (DREZ) to relieve central pain after spinal cord injury (SCI) have historically resulted in modest outcomes. A review of the literature indicates that fair to good relief of pain is achieved in approximately 50% of patients when an empirical procedure is performed. This study was undertaken to determine if intramedullary electrical guidance in DREZ lesioning could improve outcomes in patients with SCI-induced central pain. Additionally, electrical data were used to determine if the spinal cord could be somatotopically mapped with regard to this pain of central origin. Methods. Forty-one patients with traumatic SCI and intractable central pain underwent DREZ lesioning in which intramedullary electrical guidance was conducted. In nine patients, recording of DREZ-related spontaneous electrical hyperactivity guided the lesioning process. In 32 patients, recording of DREZ-induced evoked electrical hyperactivity during transcutaneous C-fiber stimulation (TCS) additionally guided lesioning. The follow-up period ranged from 1 to 7 years. The analyzed electrical data allowed for somatotopic mapping of the spinal cord. Conclusions. Intramedullary electrical guidance of DREZ lesioning substantially improves pain outcomes in patients with traumatic SCI—induced central pain, compared with an empiric technique. The best outcome occurs when DREZ-related spontaneous electrical hyperactivity and evoked hyperactivity during TCS are both used to guide the DREZ lesioning procedure. With such guidance, 100% relief of pain was achieved in 84% of patients and 50 to 100% relief of pain in 88%. Somatotopic mapping of the electrical data led to a proposed pain mechanism for below-level pain, implicating the sympathetic nervous system.


1981 ◽  
Vol 55 (3) ◽  
pp. 414-419 ◽  
Author(s):  
Blaine S. Nashold ◽  
Elizabeth Bullitt

✓ Thirteen patients with intractable long-term pain following spinal cord injury and paraplegia were treated with dorsal root entry zone lesions placed at the level just above the transection. Pain relief of 50% or more was achieved in 11 of the 13 patients, with follow-up periods ranging from 5 to 38 months. A previous report showed that central pain from brachial plexus avulsion could be relieved by dorsal root entry zone lesions, and this technique has been extended to the central pain phenomena associated with spinal trauma and paraplegia.


Spine ◽  
2002 ◽  
Vol 27 (7) ◽  
pp. E177-E184 ◽  
Author(s):  
Matthew R. Denkers ◽  
Heather L. Biagi ◽  
Mary Ann O’Brien ◽  
Alejandro R. Jadad ◽  
Mary E. Gauld

1983 ◽  
Vol 59 (5) ◽  
pp. 884-886 ◽  
Author(s):  
Walter J. Levy ◽  
Alan Nutkiewicz ◽  
Q. Michael Ditmore ◽  
Clark Watts

✓ Dorsal root entry zone lesions have been documented as effective for control of intractable pain in patients with brachial plexus avulsion or severe spinal cord injury. These lesions are usually made with the radiofrequency technique. The authors report three cases in which the CO2 laser was used as an alternative means of making the lesions. This latter technique provided effective pain relief in two of the patients and was efficient to use. It was noted that the presence of overlying scar tissue can be deceptive in judging the depth of the lesion made with the laser. The CO2 laser provided a means of producing controlled spinal cord lesions which may be more precise than the radiofrequency method.


2013 ◽  
Vol 19 (1) ◽  
pp. 78-86 ◽  
Author(s):  
Swati Mehta ◽  
Katherine Orenczuk ◽  
Amanda McIntyre ◽  
Gabrielle Willems ◽  
Dalton Wolfe ◽  
...  

2008 ◽  
Vol 62 (suppl_1) ◽  
pp. ONS235-ONS244 ◽  
Author(s):  
Yucel Kanpolat ◽  
Hakan Tuna ◽  
Melih Bozkurt ◽  
Atilla Halil Elhan

Abstract Objective: Dorsal root entry zone (DREZ) operations came into medical practice after the demonstration of increased electrical activity in the dorsal horn of the spinal cord and brainstem in patients with deafferentation of the central nervous system after injury to these areas. The aim of the study was to describe the technique and the effectiveness of spinal DREZ and nucleus caudalis (NC) DREZ operations, which may be the treatments of choice in unique chronic pain conditions that do not respond to medical therapy or any other surgical methods. Methods: Fifty-five patients (44 spinal, 11 NC DREZ) underwent 59 (48 spinal, 11 NC DREZ) operations. There were 44 men and 11 women with a mean age of 46.4 years (range, 24–74 yr). The mean follow-up period was 72 months (range, 6 mo–20 yr). Follow-up assessments were performed with clinical examination on the first day and in the sixth and twelfth months postoperatively. Patients' pain scores and Karnofsky Performance Scale scores were also evaluated pre- and postoperatively. Results: The initial success rates for spinal and NC DREZotomy procedures were 77 and 72.5%, respectively. In the spinal DREZotomy group, mortality occurred in one patient (2.2%). There were two cases of transient muscle weakness (4.4%) and two of cerebrospinal fluid fistulae (4.4%). In the NC DREZotomy group, mortality occurred in one patient (9%). There were two cases of transient ataxia (18%) and two of transient hemiparesis (18%). Conclusion: Spinal and trigeminal NC DREZ operations are effective in the treatment of intractable pain syndromes, especially in traumatic brachial plexus avulsions, segmental pain after spinal cord injury, postherpetic neuralgia, topographically limited cancer pain, and atypical facial pain.


1995 ◽  
Vol 82 (4) ◽  
pp. 587-591 ◽  
Author(s):  
Mahmood Fazl ◽  
David A. Houlden ◽  
Zelma Kiss

✓ Direct spinal cord stimulation and recording techniques were used intraoperatively to localize the dorsal root entry zone (DREZ) in four patients with brachial plexus avulsion and severe intractable pain. The spinal cord was stimulated by a cordotomy needle placed on the pia-arachnoid at the DREZ or the dorsal or dorsolateral aspect of the spinal cord. Recordings were obtained from a subdural silver ball electrode placed rostral or caudal to the stimulation site. Spinal cord conduction velocity was significantly faster following dorsolateral stimulation than dorsal stimulation (mean = 66 and 45 m/sec respectively). The spinal cord evoked potential was significantly larger in amplitude following dorsolateral stimulation than dorsal stimulation at a specific stimulus intensity. Stimulation at the DREZ failed to evoke a response. These neurophysiological phenomena helped to accurately localize the DREZ before DREZ lesioning was undertaken. There were no untoward neurological deficits related to the DREZ lesions and all patients had satisfactory pain relief following the procedure. Intraoperative spinal cord mapping facilitates accurate DREZ localization when the DREZ cannot be visually identified.


Sign in / Sign up

Export Citation Format

Share Document