Endovascular occlusion of intracranial vessels for curative treatment of unclippable aneurysms: report of 16 cases

1991 ◽  
Vol 75 (5) ◽  
pp. 694-701 ◽  
Author(s):  
Jonathan E. Hodes ◽  
Armand Aymard ◽  
Y. Pierre Gobin ◽  
Daniel Rüfenacht ◽  
Siegfried Bien ◽  
...  

✓ Among 121 intracerebral aneurysms presenting at one institution between 1984 and 1989, 16 were treated by endovascular means. All 16 lesions were intradural and intracranial, and had failed either surgical or endovascular attempts at selective exclusion with parent vessel preservation. The lesions included four giant middle cerebral artery (MCA) aneurysms, one giant anterior communicating artery aneurysm, six giant posterior cerebral artery aneurysms, one posterior inferior cerebellar artery aneurysm, one giant mid-basilar artery aneurysm, two giant fusiform basilar artery aneurysms, and one dissecting vertebral artery aneurysm. One of the 16 patients failed an MCA test occlusion and was approached surgically after attempted endovascular selective occlusion. Treatment involved pretreatment evaluation of cerebral blood flow followed by a preliminary parent vessel test occlusion under neuroleptic analgesia with vigilant neurological monitoring. If the test occlusion was tolerated, it was immediately followed by permanent occlusion of the parent vessel with either detachable or nondetachable balloon or coils. The follow-up period ranged from 1 to 8 years. Excellent outcomes were obtained in 12 cases with complete angiographic obliteration of the aneurysm and no new neurological deficits and/or improvement of the pre-embolization symptoms. Four patients died: two related to the procedure, one secondary to rupture of another untreated aneurysm, and the fourth from a postoperative MCA thrombosis after having failed endovascular test occlusion. The angiographic, clinical, and cerebral blood flow criteria for occlusion tolerance are discussed.

1978 ◽  
Vol 48 (4) ◽  
pp. 639-641 ◽  
Author(s):  
Donald Judice ◽  
Edward S. Connolly

✓ The authors present a case of giant aneurysm of the posterior inferior cerebellar artery. It was successfully excised with reversal of neurological deficits.


2001 ◽  
Vol 95 (3) ◽  
pp. 402-411 ◽  
Author(s):  
Claudius Thomé ◽  
Peter Vajkoczy ◽  
Peter Horn ◽  
Christian Bauhuf ◽  
Ulrich Hübner ◽  
...  

Object. Temporary arterial occlusion (TAO) during aneurysm surgery carries the risk of ischemic sequelae. Because monitoring of regional cerebral blood flow (rCBF) may limit neurological damage, the authors evaluated a novel thermal diffusion (TD) microprobe for use in the continuous and quantitative assessment of rCBF during TAO. Methods. Following subcortical implantation of the device at a depth of 20 mm in the middle cerebral artery or anterior cerebral artery territory, rCBF was continuously monitored by TD microprobe (TD-rCBF) throughout surgery in 20 patients harboring anterior circulation aneurysms; 46 occlusive episodes were recorded. Postoperative radiographic evidence of new infarction was used as the threshold for failure of occlusion tolerance. The mean subcortical TD-rCBF decreased from 27.8 ± 8.4 ml/100 g/min at baseline to 13.7 ± 11.1 ml/100 g/min (p < 0.0001) during TAO. The TD microprobe showed an immediate exponential decline of TD-rCBF on clip placement. On average, 50% of the total decrease was reached after 12 seconds, thus rapidly indicating the severity of hypoperfusion. Following clip removal, TD-rCBF returned to baseline levels after an average interval of 32 seconds, and subsequently demonstrated a transient hyperperfusion to 41.4 ± 18.3 ml/100 g/min (p < 0.001). The occurrence of postoperative infarction (15%) and the extent of postischemic hyperperfusion correlated with the depth of occlusion-induced ischemia. Conclusions. The new TD microprobe provides a sensitive, continuous, and real-time assessment of intraoperative rCBF during TAO. Occlusion-induced ischemia is reliably detected within the 1st minute after clip application. In the future, this may enable the surgeon to alter the surgical strategy early after TAO to prevent ischemic brain injury.


1981 ◽  
Vol 55 (5) ◽  
pp. 771-778 ◽  
Author(s):  
Tomio Sasaki ◽  
Sei-itsu Murota ◽  
Susumu Wakai ◽  
Takao Asano ◽  
Keiji Sano

✓ Transformation of arachidonic acid into prostaglandins was investigated in the basilar artery by incubating sections of artery with carbon-14-labeled arachidonic acid. Thin-layer radiochromatography revealed that, in normal canine basilar arteries, 14C-arachidonic acid was transformed mainly to 6-ketoprostaglandin (PG)F1α, a spontaneous metabolite of prostacyclin (PGI2). Among other prostaglandins, only a small amount of PGF2α was detected, whereas PGD2, PGE2, and thromboxane B2 were not. Arteries removed on Days 3 and 8 after subarachnoid blood injection showed a prostaglandin synthesis profile similar to that in the normal cerebral artery. In borate-buffered saline (0.1M borate buffer, pH 9.0/0.15M NaCl = 1:9, vol/vol), canine basilar artery produced a PGI2-like substance that inhibited adenosine diphosphate (ADP)-induced platelet aggregation. Its anti-aggregatory activity was completely abolished by acidification. Aspirin likewise inhibited production of the anti-aggregatory substance. From these results, it was concluded that the anti-aggregatory activity was due solely to the production of PGI2 by the arterial specimen. Based on the above results, PGI2 biosynthetic activity in the cerebral artery exposed to subarachnoid blood injection was bioassayed by measuring the inhibitory activity of the incubation product upon ADP-induced platelet aggregation following incubation of the arteries in borate-buffered saline for 5 to 30 minutes at 20°C, using synthetic PGI2-Na as a standard. The synthetic activity of PGI2 in the artery exposed to subarachnoid blood injection had diminished remarkably by Days 3 and 8. This diminution of PGI2 synthesis in the cerebral artery may be involved in the pathogenesis of cerebral vasospasm.


1996 ◽  
Vol 84 (6) ◽  
pp. 962-971 ◽  
Author(s):  
Tohru Mizutani

✓ A long-term follow-up study (minimum duration 2 years) was made of 13 patients with tortuous dilated basilar arteries. Of these, five patients had symptoms related to the presence of such arteries. Symptoms present at a very early stage included vertebrobasilar insufficiency in two patients, brainstem infarction in two patients, and left hemifacial spasm in one patient. Initial magnetic resonance (MR) imaging in serial slices of basilar arteries obtained from the five symptomatic patients showed an intimal flap or a subadventitial hematoma, both of which are characteristic of a dissecting aneurysm. In contrast, the basilar arteries in the eight asymptomatic patients did not show particular findings and they remained clinically and radiologically silent during the follow-up period. All of the lesions in the five symptomatic patients gradually grew to fantastic sizes, with progressive deterioration of the related clinical symptoms. Dilation of the basilar artery was consistent with hemorrhage into the “pseudolumen” within the laminated thrombus, which was confirmed by MR imaging studies. Of the five symptomatic patients studied, two died of fatal subarachnoid hemorrhage (SAH) and two of brainstem compression; the fifth patient remains alive without neurological deficits. In the three patients who underwent autopsy, a definite macroscopic double lumen was observed in both the proximal and distal ends of the aneurysms within the layer of the thickening intima. Microscopically, multiple mural dissections, fragmentation of internal elastic lamina (IEL), and degeneration of media were diffusely observed in the remarkably extended wall of the aneurysms. The substantial mechanism of pathogenesis and enlargement in the symptomatic, highly tortuous dilated artery might initially be macroscopic dissection within a thickening intima and subsequent repetitive hemorrhaging within a laminated thrombus in the pseudolumen combined with microscopic multiple mural dissections on the basis of a weakened IEL. The authors note and caution that symptomatic, tortuous dilated basilar arteries cannot be overlooked because they include a group of malignant arteries that may grow rapidly, resulting in a fatal course.


1999 ◽  
Vol 90 (2) ◽  
pp. 300-305 ◽  
Author(s):  
Leif Østergaard ◽  
Fred H. Hochberg ◽  
James D. Rabinov ◽  
A. Gregory Sorensen ◽  
Michael Lev ◽  
...  

Object. In this study the authors assessed the early changes in brain tumor physiology associated with glucocorticoid administration. Glucocorticoids have a dramatic effect on symptoms in patients with brain tumors over a time scale ranging from minutes to a few hours. Previous studies have indicated that glucocorticoids may act either by decreasing cerebral blood volume (CBV) or blood-tumor barrier (BTB) permeability and thereby the degree of vasogenic edema.Methods. Using magnetic resonance (MR) imaging, the authors examined the acute changes in CBV, cerebral blood flow (CBF), and BTB permeability to gadolinium-diethylenetriamine pentaacetic acid after administration of dexamethasone in six patients with brain tumors. In patients with acute decreases in BTB permeability after dexamethasone administration, changes in the degree of edema were assessed using the apparent diffusion coefficient of water.Conclusions. Dexamethasone was found to cause a dramatic decrease in BTB permeability and regional CBV but no significant changes in CBF or the degree of edema. The authors found that MR imaging provides a powerful tool for investigating the pathophysiological changes associated with the clinical effects of glucocorticoids.


2002 ◽  
Vol 97 (5) ◽  
pp. 1179-1183 ◽  
Author(s):  
Basar Atalay ◽  
Hayrunnisa Bolay ◽  
Turgay Dalkara ◽  
Figen Soylemezoglu ◽  
Kamil Oge ◽  
...  

Object. The goal of this study was to investigate whether stimulation of trigeminal afferents in the cornea could enhance cerebral blood flow (CBF) in rats after they have been subjected to experimental subarachnoid hemorrhage (SAH). Cerebral vasospasm following SAH may compromise CBF and increase the risks of morbidity and mortality. Currently, there is no effective treatment for SAH-induced vasospasm. Direct stimulation of the trigeminal nerve has been shown to dilate constricted cerebral arteries after SAH; however, a noninvasive method to activate this nerve would be preferable for human applications. The authors hypothesized that stimulation of free nerve endings of trigeminal sensory fibers in the face might be as effective as direct stimulation of the trigeminal nerve. Methods. Autologous blood obtained from the tail artery was injected into the cisterna magna of 10 rats. Forty-eight and 96 hours later (five rats each) trigeminal afferents were stimulated selectively by applying transcorneal biphasic pulses (1 msec, 3 mA, and 30 Hz), and CBF enhancements were detected using laser Doppler flowmetry in the territory of the middle cerebral artery. Stimulation-induced changes in cerebrovascular parameters were compared with similar parameters in sham-operated controls (six rats). Development of vasospasm was histologically verified in every rat with SAH. Corneal stimulation caused an increase in CBF and blood pressure and a net decrease in cerebrovascular resistance. There were no significant differences between groups for these changes. Conclusions. Data from the present study demonstrate that transcorneal stimulation of trigeminal nerve endings induces vasodilation and a robust increase in CBF. The vasodilatory response of cerebral vessels to trigeminal activation is retained after SAH-induced vasospasm.


2000 ◽  
Vol 92 (6) ◽  
pp. 1009-1015 ◽  
Author(s):  
Seiji Yamamoto ◽  
Weiyu Teng ◽  
Shigeru Nishizawa ◽  
Takeharu Kakiuchi ◽  
Hideo Tsukada

Object. The hydroxyl radical scavenger (±)-N,N′-propylenedinicotinamide (AVS) has been shown to ameliorate the occurrence of vasospasm following experimental subarachnoid hemorrhage (SAH) and to reduce the incidence of delayed ischemic neurological deficits (DINDs) in patients with SAH. The authors investigated whether prophylactic administration of AVS could improve cerebral blood flow (CBF) and cerebral glucose utilization (CGU) following SAH in rats.Methods. Anesthetized rats were subjected to intracisternal injection of blood (SAH group) or saline (control group). Either AVS (1 mg/kg/min) or saline (vehicle group) was continuously injected into the rat femoral vein. Forty-eight hours later, positron emission tomography scanning was used with the tracers 15O-H2O and 18F-2-fluoro-d-glucose to analyze quantitatively CBF and CGU, respectively, in the frontoparietal and occipital regions (12 regions of interest/group).In SAH rats receiving only vehicle, CBF decreased significantly (p < 0.05, Tukey's test) and CGU tended to decrease, compared with values obtained in control (non-SAH) rats receiving vehicle. In rats that were subjected to SAH, administration of AVS significantly (p < 0.05, Tukey's test) improved CBF and CGU in both the frontoparietal and occipital regions compared with administration of vehicle alone.Conclusions. Prophylactic administration of AVS improves CBF and CGU in the rat brain subjected to SAH, and can be a good pharmacological treatment for the prevention of DINDs following SAH.


1984 ◽  
Vol 60 (5) ◽  
pp. 916-922 ◽  
Author(s):  
Bruce Mickey ◽  
Sissel Vorstrup ◽  
Bo Voldby ◽  
Helle Lindewald ◽  
Aage Harmsen ◽  
...  

✓ A noninvasive three-dimensional method for measuring cerebral blood flow (CBF), xenon-133 inhalation and emission computerized tomography, was used to investigate the CBF changes accompanying delayed neurological deterioration following subarachnoid hemorrhage (SAH). A total of 67 measurements were performed on 20 patients in Hunt and Hess' clinical Grades I to III in the first 21 days post SAH. Five patients with normal CBF tomograms on admission developed delayed neurological deficits in the 2nd week after hemorrhage, at which time repeat CBF tomograms in four patients revealed large areas of well defined regional flow decrease in the vascular territories of the anterior or middle cerebral arteries. Severe vasospasm was noted in three of these patients in whom arteriography was performed in the 2nd week post SAH. Diffuse bihemispheric CBF decreases were noted later in the course of delayed neurological deficits; however, measurements obtained soon after the onset of focal symptoms suggest that the only CBF decreases directly produced by vasospasm in Grade III patients are regional changes.


1985 ◽  
Vol 63 (6) ◽  
pp. 937-943 ◽  
Author(s):  
David J. Boarini ◽  
Neal F. Kassell ◽  
James A. Sprowell ◽  
Julie J. Olin ◽  
Hans C. Coester

✓ Profound arterial hypotension is à commonly used adjunct in surgery for aneurysms and arteriovenous malformations. Hyperventilation with hypocapnia is also used in these patients to increase brain slackness. Both measures reduce cerebral blood flow (CBF). Of concern is whether CBF is reduced below ischemic thresholds when both techniques are employed together. To determine this, 12 mongrel dogs were anesthetized with morphine, nitrous oxide, and oxygen, and then paralyzed with pancuronium and hyperventilated. Arterial pCO2 was controlled by adding CO2 to the inspired gas mixture. Cerebral blood flow was measured at arterial pCO2 levels of 40 and 20 mm Hg both before and after mean arterial pressure was lowered to 40 mm Hg with adenosine enhanced by dipyridamole. In animals where PaCO2 was reduced to 20 mm Hg and mean arterial pressure was reduced to 40 mm Hg, cardiac index decreased 42% from control and total brain blood flow decreased 45% from control while the cerebral metabolic rate of oxygen was unchanged. Hypocapnia with hypotension resulted in small but statistically significant reductions in all regional blood flows, most notably in the brain stem. The reported effects of hypocapnia on CBF during arterial hypotension vary depending on the hypotensive agents used. Profound hypotension induced with adenosine does not eliminate CO2 reactivity, nor does it lower blood flow to ischemic levels in this model, even in the presence of severe hypocapnia.


2004 ◽  
Vol 100 (1) ◽  
pp. 97-105 ◽  
Author(s):  
Kazuhide Furuya ◽  
Nobutaka Kawahara ◽  
Kensuke Kawai ◽  
Tomikatsu Toyoda ◽  
Keiichiro Maeda ◽  
...  

Object. The intraluminal suture model for focal cerebral ischemia is increasingly used, but not without problems. It causes hypothalamic injury, subarachnoid hemorrhage, and inadvertent premature reperfusion. The patency of the posterior communicating artery (PCoA) potentially affects the size of the infarct. In addition, survival at 1 week is unstable. The authors operated on C57Black6 mice to produce proximal middle cerebral artery occlusion (MCAO) so that drawbacks with the suture model could be circumvented. Methods. The MCA segment just proximal to the olfactory branch was occluded either permanently or temporarily. After 1 hour of MCAO the infarct volume was significantly smaller than that found after 2 hours or in instances of permanent MCAO. The differences were assessed at 24 hours and 7 days after surgery (p < 0.05 and p < 0.001, respectively). The patency of the PCoA, as visualized using carbon black solution, did not correlate with the infarct size. Neurologically, the 1- and 2-hour MCAO groups displayed significantly less severe deficits than the permanent MCAO group on Days 1, 4, and 7 (p < 0.005 and p < 0.01, respectively). Although the infarct size, neurological deficits, and body weight loss were more severe in the permanent MCAO group, the survival rate at Day 7 was 80%. Conclusions. This model provides not only a robust infarct size (which is not affected by the patency of the PCoA), but also a better survival rate.


Sign in / Sign up

Export Citation Format

Share Document