Mechanisms of snowboarding-related severe head injury: shear strain induced by the opposite-edge phenomenon

2002 ◽  
Vol 97 (3) ◽  
pp. 542-548 ◽  
Author(s):  
Hiroshi Nakaguchi ◽  
Kazuo Tsutsumi

Object. To date, there has been no published study in which the focus was on the mechanisms of head injuries associated with snowboarding. The purpose of this study was to identify these mechanisms. Methods. The patient population consisted of 38 consecutive patients with snowboarding-related major head injuries who were treated at two hospitals in Japan, where for years many winter sports injuries have been treated. The skill level of the snowboarder, the cause of the accident, the direction of the fall, the site of impact to the head, and the condition of the ski slope were examined. The injuries were classified as coup, contrecoup, or shear injuries. The predominant features of snowboarding-related major head injuries included: falling backward (68% of cases), occipital impact (66% of cases), a gentle or moderate ski slope (76% of cases), and inertial injury (76% of cases [shear injury in 68% and contrecoup injury in 8% of the patients]). Acute subdural hematoma frequently occurred after a patient fell on the slope (p = 0.025), fell backward (p = 0.0014), or received an occipital impact (p = 0.0064). Subcortical hemorrhagic contusions frequently occurred after the patient fell during a jump (p = 0.0488), received a temporal impact (p = 0.0404), or fell on the jump platform (p = 0.0075). Shear injury frequently occurred after a fall that occurred during a jump or after simple falls on the ski slope, and contact injury was frequently seen after a collision (p = 0.0441). Conclusions. The majority of severe head injuries associated with snowboarding that occur after a simple fall on the slope are believed to involve the opposite-edge phenomenon, which results from a fall backward on a gentle or moderate slope causing occipital impact. The use of a device to protect the occiput is proposed to reduce head injuries associated with snowboarding.

1983 ◽  
Vol 59 (4) ◽  
pp. 601-605 ◽  
Author(s):  
Gordon G. Stuart ◽  
Glen S. Merry ◽  
James A. Smith ◽  
John D. N. Yelland

✓ A prospective series of 100 consecutive severe head injuries is presented. There were 34 deaths. Intracranial pressure (ICP) was not monitored in this series, and it is suggested that the outcome compares favorably with series in which ICP monitoring was performed. Early evacuation of life-threatening intracranial hematoma and airway control remain essentials of treatment of severe head injury.


1983 ◽  
Vol 58 (1) ◽  
pp. 45-50 ◽  
Author(s):  
A. David Mendelow ◽  
John O. Rowan ◽  
Lilian Murray ◽  
Audrey E. Kerr

✓ Simultaneous recordings of intracranial pressure (ICP) from a single-lumen subdural screw and a ventricular catheter were compared in 10 patients with severe head injury. Forty-one percent of the readings corresponded within the same 10 mm Hg ranges, while 13% of the screw pressure measurements were higher and 46% were lower than the associated ventricular catheter measurements. In 10 other patients, also with severe head injury, pressure measurements obtained with the Leeds-type screw were similarly compared with ventricular fluid pressure. Fifty-eight percent of the dual pressure readings corresponded, while 15% of the screw measurements were higher and 27% were lower than the ventricular fluid pressure, within 10-mm Hg ranges. It is concluded that subdural screws may give unreliable results, particularly by underestimating the occurrence of high ICP.


1979 ◽  
Vol 51 (4) ◽  
pp. 507-509 ◽  
Author(s):  
Richard N. W. Wohns ◽  
Allen R. Wyler

✓ We are reporting a retrospective study of 62 patients whose head injury was sufficiently severe to cause a high probability of posttraumatic epilepsy. Of 50 patients treated with phenytoin, 10% developed epilepsy of late onset. Twelve patients not treated with phenytoin but who had head injuries of equal magnitude had a 50% incidence of epilepsy. These data from a highly selected group of patients with severe head injuries confirm the bias that treatment with phenytoin decreases the incidence of posttraumatic epilepsy.


1991 ◽  
Vol 75 (5) ◽  
pp. 766-773 ◽  
Author(s):  
Keith B. Quattrocchi ◽  
Edmund H. Frank ◽  
Claramae H. Miller ◽  
Asim Amin ◽  
Bernardo W. Issel ◽  
...  

✓ Infection is a major complication of severe head injury, occurring in 50% to 75% of patients who survive to hospitalization. Previous investigations of immune activity following head injury have demonstrated suppression of helper T-cell activation. In this study, the in vitro production of interferon-gamma (INF-γ), interleukin-1 (IL-1), and interleukin-2 (IL-2) was determined in 25 head-injured patients following incubation of peripheral blood lymphocytes (PBL's) with the lymphocyte mitogen phytohemagglutinin (PHA). In order to elucidate the functional status of cellular cytotoxicity, lymphokine-activated killer (LAK) cell cytotoxicity assays were performed both prior to and following incubation of PBL's with IL-2 in five patients with severe head injury. The production of INF-γ and IL-2 by PHA-stimulated PBL's was maximally depressed within 24 hours of injury (p < 0.001 for INF-γ, p = 0.035 for IL-2) and partially normalized within 21 days of injury. There was no change in the production of IL-1. When comparing the in vitro LAK cell cytotoxicity of PBL's from head-injured patients and normal subjects, there was a significant depression in LAK cell cytotoxicity both prior to (p = 0.010) and following (p < 0.001) incubation of PBL's with IL-2. The results of this study indicate that IL-2 and INF-γ production, normally required for inducing cell-mediated immunity, is suppressed following severe head injury. The failure of IL-2 to enhance LAK cell cytotoxicity suggests that factors other than decreased IL-2 production, such as inhibitory soluble mediators or suppressor lymphocytes, may be responsible for the reduction in cellular immune activity following severe head injury. These findings may have significant implications in designing clinical studies aimed at reducing the incidence of infection following severe head injury.


1991 ◽  
Vol 75 (Supplement) ◽  
pp. S28-S36 ◽  
Author(s):  
Lawrence F. Marshall ◽  
Theresa Gautille ◽  
Melville R. Klauber ◽  
Howard M. Eisenberg ◽  
John A. Jane ◽  
...  

✓ The outcome of severe head injury was prospectively studied in patients enrolled in the Traumatic Coma Data Bank (TCDB) during the 45-month period from January 1, 1984, through September 30, 1987. Data were collected on 1030 consecutive patients admitted with severe head injury (defined as a Glasgow Coma Scale (GCS) score of 8 or less following nonsurgical resuscitation). Of these, 284 either were brain-dead on admission or had a gunshot wound to the brain. Patients in these two groups were excluded, leaving 746 patients available for this analysis. The overall mortality rate for the 746 patients was 36%, determined at 6 months postinjury. As expected, the mortality rate progressively decreased from 76% in patients with a postresuscitation GCS score of 3 to approximately 18% for patients with a GCS score of 6, 7, or 8. Among the patients with nonsurgical lesions (overall mortality rate, 31%), the mortality rate was higher in those having an increased likelihood of elevated intracranial pressure as assessed by a new classification of head injury based on the computerized tomography findings. In the 276 patients undergoing craniotomy, the mortality rate was 39%. Half of the patients with acute subdural hematomas died — a substantial improvement over results in previous reports. Outcome differences between the four TCDB centers were small and were, in part, explicable by differences in patient age and the type and severity of injury. This study describes head injury outcome in four selected head-injury centers. It indicates that a mortality rate of approximately 35% is to be expected in such patients admitted to experienced neurosurgical units.


2000 ◽  
Vol 92 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Niels Juul ◽  
Gabrielle F. Morris ◽  
Sharon B. Marshall ◽  
_ _ ◽  
Lawrence F. Marshall

Object. Recently, a renewed emphasis has been placed on managing severe head injury by elevating cerebral perfusion pressure (CPP), which is defined as the mean arterial pressure minus the intracranial pressure (ICP). Some authors have suggested that CPP is more important in influencing outcome than is intracranial hypertension, a hypothesis that this study was designed to investigate.Methods. The authors examined the relative contribution of these two parameters to outcome in a series of 427 patients prospectively studied in an international, multicenter, randomized, double-blind trial of the N-methyl-d-aspartate antagonist Selfotel. Mortality rates rose from 9.6% in 292 patients who had no clinically defined episodes of neurological deterioration to 56.4% in 117 patients who suffered one or more of these episodes; 18 patients were lost to follow up. Correspondingly, favorable outcome, defined as good or moderate on the Glasgow Outcome Scale at 6 months, fell from 67.8% in patients without neurological deterioration to 29.1% in those with neurological deterioration. In patients who had clinical evidence of neurological deterioration, the relative influence of ICP and CPP on outcome was assessed. The most powerful predictor of neurological worsening was the presence of intracranial hypertension (ICP ≥ 20 mm Hg) either initially or during neurological deterioration. There was no correlation with the CPP as long as the CPP was greater than 60 mm Hg.Conclusions. Treatment protocols for the management of severe head injury should emphasize the immediate reduction of raised ICP to less than 20 mm Hg if possible. A CPP greater than 60 mm Hg appears to have little influence on the outcome of patients with severe head injury.


1982 ◽  
Vol 56 (4) ◽  
pp. 498-503 ◽  
Author(s):  
Thomas G. Saul ◽  
Thomas B. Ducker

✓ During 1977–1978, 127 patients with severe head injury were admitted and underwent intracranial pressure (ICP) monitoring. All patients had Glasgow Coma Scale (GCS) scores of 7 or less. All received identical initial treatment according to a standardized protocol. The patients' average age was 29 years; 60% had multiple trauma, and 35% needed emergency intracranial operations. Treatment for elevations of ICP was begun when ICP rose to 20 to 25 mm Hg, and included mannitol therapy and drainage of cerebrospinal fluid (CSF) when possible. Forty-three patients (34%) had ICP greater than or equal to 25 mm Hg; of these, 36 (84%) died. The mortality rate of the entire group was 46%. During 1979–1980, 106 patients with severe head injury were admitted and underwent ICP monitoring. Their average age was 29 years; 51% had multiple trauma, and 31% underwent emergency intracranial surgery. All patients received the same standardized protocol as the previous series, with the exception of the treatment of ICP. In this present series: if ICP was 15 mm Hg or less (normal ICP), patients were continued on hyperventilation, steroids, and intensive care; if ICP was 16 to 24 mm Hg, mannitol was administered and CSF was drained; if ICP was 25 mm Hg or greater, the patients were randomized into a controlled barbiturate therapy study. Twenty-six patients (25%) had ICP's of 25 mm Hg or greater, compared to 34% in the previous series (p < 0.05), and 18 of these 26 patients (69%) died. The overall mortality for this current series was 28% compared to 46% in the previous series (p < 0.0005). This study reconfirms the high mortality rate if ICP is 25 mm Hg or greater; however, the data also document that early aggressive treatment based on ICP monitoring significantly lessens the incidence of ICP of 25 mm Hg or greater and reduces the overall mortality rate of severe head injury.


1985 ◽  
Vol 63 (6) ◽  
pp. 830-839 ◽  
Author(s):  
Eiji Yoshino ◽  
Tarumi Yamaki ◽  
Toshihiro Higuchi ◽  
Yoshiharu Horikawa ◽  
Kimiyoshi Hirakawa

✓ Dynamic computerized tomography (CT) was performed on 42 patients with acute head injury to evaluate the hemodynamics and to elucidate the nature of fatal diffuse brain bulk enlargement. Patients were divided into two groups according to the outcome: Group A included 17 nonfatally injured patients, eight with acute epidural hematomas and nine with acute subdural hematomas; Group B included 25 fatally injured patients, 16 with acute subdural hematomas and nine with bilateral brain bulk enlargement. Remarkable brain bulk enlargement could be seen in all fatally injured patients with acute subdural hematoma. In 29 (69%) of 42 patients, dynamic CT was performed within 2 hours after the impact. In the nonfatally injured patients with brain bulk enlargement, dynamic CT scans suggested a hyperemic state. On the other hand, in 17 (68%) of the 25 fatally injured patients, dynamic CT scans revealed a severely ischemic state. In the fatally injured patients with acute subdural hematoma, CT Hounsfield numbers in the enlarged hemisphere (hematoma side) were significantly lower than those of the opposite side (p < 0.001). Severe diffuse brain damage confirmed by follow-up CT scans and uncontrollable high intracranial pressure were noted in the fatally injured patients. Brain bulk enlargement following head injury originates from acute brain edema and an increase of cerebral blood volume. In cases of fatal head injury, acute brain edema is the more common cause of brain bulk enlargement and occurs more rapidly than is usually thought.


1998 ◽  
Vol 89 (5) ◽  
pp. 707-712 ◽  
Author(s):  
Raimund Firsching ◽  
Dieter Woischneck ◽  
Michael Diedrich ◽  
Susan Klein ◽  
Andreas Rückert ◽  
...  

Object. The availability of magnetic resonance (MR) imaging data obtained in comatose patients after head injury is scarce, because MR imaging is somewhat cumbersome to perform in patients requiring ventilation and because, in the first hours after injury, its relevance is clearly inferior to computerized tomography (CT) scanning. The authors assessed the value of MR imaging in the early postinjury period. Methods. In this prospective study MR imaging was performed in 61 consecutive patients within 7 days after they suffered a severe head injury. An initial CT scan had already been obtained. To understand the clinical significance of the lesions whose morphological appearance was identified with MR imaging, brainstem function was assessed by registration of somatosensory and auditory evoked potentials. Brainstem lesions were visualized in 39 patients (64%). Bilateral pontine lesions proved to be 100% fatal and nonbrainstem lesions carried a mortality rate of 9%. In singular cases circumstances allowed for a clear clinical distinction between primary and secondary brainstem lesions. On MR imaging all lesions were hyper- and hypointense after intervals longer than 2 days. Within shorter intervals (< 2 days) after the injury, primary lesions appeared isointense on MR imaging. In one secondary brainstem lesion there were no traces of blood. Conclusions. Because mean intracranial pressure (ICP) levels in patients without brainstem lesions were similar to those in patients with brainstem lesions, the authors conclude that it was not mainly increased ICP that accounted for the high mortality rates in patients with brainstem lesions. The authors also conclude that brainstem lesions are more frequently found in severe head injury than previously reported in studies based on neuropathological or CT scanning data. Early MR imaging after head injury has a higher predictive value than CT scanning.


1989 ◽  
Vol 71 (1) ◽  
pp. 63-71 ◽  
Author(s):  
J. Paul Muizelaar ◽  
Anthony Marmarou ◽  
Antonio A. F. DeSalles ◽  
John D. Ward ◽  
Richard S. Zimmerman ◽  
...  

✓ The literature suggests that in children with severe head injury, cerebral hyperemia is common and related to high intracranial pressure (ICP). However, there are very few data on cerebral blood flow (CBF) after severe head injury in children. This paper presents 72 measurements of cerebral blood flow (“CBF15”), using the 133Xe inhalation method, with multiple detectors over both hemispheres in 32 children aged 3 to 18 years (mean 13.6 years) with severe closed head injury (average Glasgow Coma Scale (GCS) score 5.4). In 25 of the children, these were combined with measurements of arteriojugular venous oxygen difference (AVDO2) and of cerebral metabolic rate of oxygen (CMRO2). In 30 patients, the first measurement was taken approximately 12 hours postinjury. In 18 patients, an indication of brain stiffness was obtained by withdrawal and injection of ventricular cerebrospinal fluid and calculation of the pressure-volume index (PVI) of Marmarou. The CBF and CMRO2 data were correlated with the GCS score, outcome, ICP, and PVI. Early after injury, CBF tended to be lower with lower GCS scores, but this was not statistically significant. This trend was reversed 24 hours postinjury, as significantly more hyperemic values were recorded the lower the GCS score, with the exception of the most severely injured patients (GCS score 3). In contrast, mean CMRO2 correlated positively with the GCS score and outcome throughout the course, but large standard deviations preclude making predictions based on CMRO2 measurements in individual patients. Early after injury, there was mild uncoupling between CBF and CMRO2 (CBF above metabolic demands, low AVDO2) and, after 24 hours, flow and metabolism were completely uncoupled with an extremely low AVDO2. Consistently reduced flow was found in only four patients; 28 patients (88%) showed hyperemia at some point in their course. This very high percentage of patients with hyperemia, combined with the lowest values of AVDO2 found in the literature, indicates that hyperemia or luxury perfusion is more prevalent in this group of patients. The three patients with consistently the highest CBF had consistently the lowest PVI: thus, the patients with the most severe hyperemia also had the stiffest brains. Nevertheless, and in contrast to previous reports, no correlation could be established between the course of ICP or PVI and the occurrence of hyperemia, nor was there a correlation between the levels of CBF and ICP at the time of the measurements. The authors argue that this lack of correlation is due to: 1) a definition of hyperemia that is too generous, and 2) the lack of a systematic relationship between CBF and cerebral blood volume. The implications of these findings for therapeutic modes of controlling ICP in children, such as hyperventilation and the use of mannitol, are discussed.


Sign in / Sign up

Export Citation Format

Share Document