Significance of a small bulge on the basilar artery in patients with perimesencephalic nonaneurysmal subarachnoid hemorrhage

2003 ◽  
Vol 98 (2) ◽  
pp. 426-429 ◽  
Author(s):  
Yuji Matsumaru ◽  
Kiyoyuki Yanaka ◽  
Ai Muroi ◽  
Hiroaki Sato ◽  
Takao Kamezaki ◽  
...  

✓ Perimesencephalic nonaneurysmal subarachnoid hemorrhage (SAH) is a distinct type of hemorrhage with a characteristic bleeding pattern and an excellent clinical outcome. The cause of this benign form of SAH remains unknown. The authors report on two cases of perimesencephalic nonaneurysmal SAH in which a small bulge on the basilar artery (BA) was demonstrated on three-dimensional rotational angiography studies. Based on data from these cases, one may infer that the lesion on the BA is responsible for the SAH. The possible pathogenesis is discussed.

1994 ◽  
Vol 80 (3) ◽  
pp. 476-483 ◽  
Author(s):  
Yasukazu Kajita ◽  
Yoshio Suzuki ◽  
Hirofumi Oyama ◽  
Toshihiko Tanazawa ◽  
Masakazu Takayasu ◽  
...  

✓ To investigate the function of nitric oxide (a major endothelium-derived relaxing factor) in cerebral arteries after subarachnoid hemorrhage (SAH) in vivo, several nitric oxide-related substances were administered to dogs that had undergone double SAH. These included L-arginine (a substrate for the formation of nitric oxide), NG-monomethyl-L-arginine (L-NMMA, an analog of L-arginine that inhibits the formation of nitric oxide from L-arginine), and superoxide dismutase (SOD, which protects nitric oxide from oxidation by superoxide anion), which were given via intracisternal injection. The diameter of the basilar artery was assessed angiographically. In intact dogs, intracisternal bolus injections of L-arginine (1, 10, or 100 µmol) produced a dose-dependent increase in the internal diameter of the basilar artery; conversely, L-NMMA reduced the diameter of the basilar artery from baseline in a dose-dependent manner. On Days 4 and 7, after two intracisternal injections of autologous blood, L-arginine produced transient vasodilation of the spastic basilar artery, whereas L-NMMA produced no significant vasoconstriction. The vasodilator effect of L-arginine after SAH was stronger on Day 4 than on Day 7, but less than in intact dogs. Intracisternal injection of SOD, which caused no effect per se, enhanced the duration of the vasodilator effect of L-arginine on the basilar artery on Day 4 and both the magnitude and duration of that effect on Day 7. Thus, the basal release of nitric oxide was impaired after SAH, but the ability to synthesize nitric oxide in the vascular wall was not abolished. The finding that the simultaneous injection of SOD enhanced and prolonged the vasodilation induced by sufficient exogenous L-arginine suggests that the inactivation of nitric oxide by superoxide anion contributes to the development of vasospasm.


2003 ◽  
Vol 98 (3) ◽  
pp. 561-564 ◽  
Author(s):  
Yoshifumi Kawanabe ◽  
Tomoh Masaki ◽  
Nobuo Hashimoto

Object. The Ca++ influx into vascular smooth-muscle cells (VSMCs) plays a fundamental role in the development and chronic effects of vasospasm after subarachnoid hemorrhage (SAH). The Ca++-permeable nonselective cation channels (NSCCs) are activated by several endothelium-derived constricting factors such as endothelin 1 (ET-1) and thromboxane A2. Moreover, the receptor-operated Ca++ channel blocker LOE 908 inhibits ET-1—induced extracellular Ca++ influx via NSCCs in the VSMCs of the basilar artery (BA) and the NSCC-dependent part of ET-1—induced vasoconstriction of BA rings. The purpose of the present study was to evaluate the in vivo role of LOE 908 on SAH-induced vasospasm. Methods. Forty-two Japanese white rabbits were assigned to seven groups. Treatment groups consisted of the following: 1) control rabbits without SAH that received a cisternal injection of saline; 2) rabbits with SAH that were subjected to the intravenous administration of saline; 3 through 6) rabbits with SAH that underwent the intravenous administration of 0.01, 0.1, 1, or 10 mg/kg LOE 908, respectively; and 7) rabbits without SAH that underwent the intravenous administration of 10 mg/kg LOE 908. Autologous blood was injected into the cisterna magna. The caliber of the BA was measured on angiographic studies before and after the cisternal injection of autologous blood. The intravenous injection of LOE 908 inhibited the magnitude of an SAH-induced vasosapsm. In addition, the concentration of LOE 908 required to relax vasospasm (1 mg/kg) correlated with that required to block Ca++ influx into VSMCs. Conclusions. The Ca++ channel blocker LOE 908 may inhibit the magnitude of an SAH-induced vasospasm by blocking the influx of Ca++ through NSCCs in rabbit BAs. Blocking the NSCCs may represent a new treatment for cerebral vasospasm after SAH.


2003 ◽  
Vol 98 (3) ◽  
pp. 536-543 ◽  
Author(s):  
Federico Colombo ◽  
Carlo Cavedon ◽  
Paolo Francescon ◽  
Leopoldo Casentini ◽  
Umberto Fornezza ◽  
...  

Object. Radiosurgical treatment of a cerebral arteriovenous malformation (AVM) requires the precise definition of the nidus of the lesion in stereotactic space. This cannot be accomplished using simple stereotactic angiography, but requires a combination of stereotactic biplanar angiographic images and stereotactic contrast-enhanced computerized tomography (CT) scans. In the present study the authors describe a method in which three-dimensional (3D) rotational angiography is integrated into stereotactic space to aid treatment planning for radiosurgery. Methods. Twenty patients harboring AVMs underwent treatment planning prior to linear accelerator radiosurgery. Planning involved the acquisition of two different data sets, one of which was obtained using the standard method (a combination of biplanar stereotactic angiography with stereotactic CT scanning), and the other, which was procured using a new technique (nonstereotactic 3D rotational angiography combined with stereotactic CT scanning by a procedure of image fusion). The treatment plan that was developed using the new method was compared with that developed using the standard one. For each patient the number of isocenters and the dimension of selected collimators were the same, based on the information supplied in both methods. Target coordinates were modified in only five cases and by a limited amount (mean 0.7 mm, range 0.3–1 mm). Conclusions. The new imaging modality offers an easier and more immediate interpretation of 3D data, while maintaining the same accuracy in target definition as that provided by the standard technique. Moreover, the new method has the advantage of using nonstereotactic 3D angiography, which can be performed at a different site and a different time with respect to the irradiation procedure.


2000 ◽  
Vol 93 (3) ◽  
pp. 471-476 ◽  
Author(s):  
Yasushi Miyagi ◽  
Robin C. Carpenter ◽  
Toshinari Meguro ◽  
Andrew D. Parent ◽  
John H. Zhang

Object. Rho A, a small guanosine triphosphate—binding protein, and rho kinases have been suggested to play an important role in the agonist-induced myofilament Ca++ sensitization and cytoskeletal organization of smooth-muscle cells. To discover their possible roles in the prolonged contraction seen in cerebral vasospasm, the authors investigated the messenger (m)RNA expressions of rho A and rho-associated kinases α and β in the basilar artery (BA) of a rat double cisternal blood—injection model.Methods. An experimental subarachnoid hemorrhage (SAH) was achieved in rats by twice injecting autologous arterial blood into the cisterna magna of each animal. The mRNAs for rho A and rho-associated kinases α and β of the rat BA were analyzed using reverse transcription—polymerase chain reaction (RT-PCR). The cisternal blood injection induced a marked corrugation of elastic lamina and contraction of smooth-muscle cells observed with the aid of light and transmission electron microscopy in the rat BA on Days 3, 5, and 7. Results of the RT-PCR revealed that mRNAs for rho A and rho kinases α and β were expressed in the rat BA and that they were significantly upregulated and reached their peaks on Day 5.Conclusions. The mRNA upregulation of these proteins indicates that activation of rho A/rho kinase—related signal transduction pathways is involved in the development of long-lasting contraction of cerebral arteries after SAH.


1971 ◽  
Vol 35 (1) ◽  
pp. 71-76 ◽  
Author(s):  
Peter Davidson ◽  
David M. Robertson

✓ A mycotic basilar artery aneurysm, in which Aspergillus was identified histologically, was found to be the cause of a massive subarachnoid hemorrhage in a 75-year-old man who suffered from hereditary hemorrhagic telangiectasia; there was no evidence of intracranial involvement by the latter disorder.


2000 ◽  
Vol 93 (2) ◽  
pp. 169-174 ◽  
Author(s):  
Yuichiro Tanaka ◽  
Shigeaki Kobayashi ◽  
Kazuhiro Hongo ◽  
Tsuyoshi Tada ◽  
Hisashi Nagashima ◽  
...  

Object. Neck clipping or coil embolization cannot always achieve complete neck obstruction in wide-necked basilar artery (BA) bifurcation aneurysms. Clipping of the aneurysm body, leaving a small aneurysm rest, is one clipping method used for this kind of aneurysm to maintain the patency of the posterior cerebral arteries and perforating vessels. However, the long-term efficacy of intentional body clipping has not been well investigated. The authors reviewed their experience with intentional body clipping of wide-necked BA bifurcation aneurysms to determine suitable clipping techniques and the long-term efficacy of the procedure.Methods. Complete neck occlusion was abandoned and body clipping intentionally performed in 17 patients with BA bifurcation aneurysms; wrapping of the aneurysm rest was made in seven cases. There were 10 ruptured aneurysms (58.8%), and the size of the aneurysm was larger than 10 mm in 11 patients (64.7%). The width between the clip blades and the base of the aneurysm neck was 1 mm in 11 cases, 2 mm in four, and 3 mm in two. Favorable outcome (Glasgow Outcome Scale [GOS] Score 4 or 5) was obtained in 13 cases (76.5%) and unfavorable outcome (GOS Scores 1–3) in four cases (23.5%). Major causes of unfavorable outcome included injury to perforating arteries and major vessel occlusion following surgical manipulation, in addition to the primary damage caused by subarachnoid hemorrhage. Subarachnoid hemorrhage did not occur during a mean follow-up period of 7.4 ± 5.6 years (range 0.7–18.1 years) after treatment.Conclusions. Intentional body clipping of wide-necked BA aneurysms proved to be effective to prevent subarachnoid hemorrhage, although injury to perforating arteries remains problematic. The choice of complete neck clipping or body clipping should be established early during the microsurgical procedure to reduce the risk of injury to perforating vessels.


1992 ◽  
Vol 77 (1) ◽  
pp. 113-119 ◽  
Author(s):  
Dennis G. Vollmer ◽  
Masakazu Takayasu ◽  
Ralph G. Dacey

✓ The reactivity of rabbit basilar artery and penetrating arteriolar microvessels was studied in vitro using an isometric-tension measurement technique and an isolated perfused arteriole preparation, respectively. Comparisons were made between reactivities of normal vessels and those obtained from animals subjected to experimental subarachnoid hemorrhage (SAH) 3 days prior to examination. Subarachnoid hemorrhage produced significant increases in basilar artery contraction in response to increasing concentrations of serotonin (5-hydroxytryptamine) (10−9 to 10−5 M) and prostaglandin F2α (10−9 to 10−5 M) when compared to normal arteries. In addition, SAH attenuated the relaxing effect of acetylcholine following serotonin-induced contraction and of adenosine triphosphate after KCl-induced basilar artery contractions. In contrast to the changes observed in large arteries, cerebral microvessels did not demonstrate significant differences in spontaneous tone or in reactivity to a number of vasoactive stimuli including application of calcium, serotonin, and acetylcholine. On the other hand, small but significant changes in arteriolar responsiveness to changes in extraluminal pH and to application of KCl were noted. Findings from this study suggest that intracerebral resistance vessels of the cerebral microcirculation are not greatly affected by the presence of subarachnoid clot, in contrast to the large arteries in the basal subarachnoid space. The small changes that do occur are qualitatively different from those observed for large arteries. These findings are consistent with the observation of significant therapeutic benefit with the use of calcium channel blockers without changes in angiographically visible vasospasm in large vessels. It is likely, therefore, that calcium antagonists may act to decrease total cerebrovascular resistance at the level of the relatively unaffected microcirculation after SAH without changing large vessel diameter.


1988 ◽  
Vol 69 (2) ◽  
pp. 247-253 ◽  
Author(s):  
Kazuhiro Hongo ◽  
Neal F. Kassell ◽  
Tadayoshi Nakagomi ◽  
Tomio Sasaki ◽  
Tetsuya Tsukahara ◽  
...  

✓ Vascular contractions in response to KCl and serotonin (5-hydroxytryptamine, 5-HT) in rabbit basilar artery were studied in vitro using an isometric tension-measurement technique. Hemoglobin ( 10−5 M) markedly augmented contractions induced by 5-HT (10−9 to 10−6 M) and slightly augmented those induced by KCl (20 to 80 mM) in arteries with intact endothelium. On the other hand, the augmentation induced by hemoglobin was almost abolished in arteries that were chemically denuded of endothelial cells by pretreatment with saponin. Since hemoglobin is known to be a selective inhibitor of endothelium-derived relaxing factor (EDRF), it is possible that the augmentation of contraction by hemoglobin in endothelium-intact arteries was mediated via an inhibition of spontaneously released EDRF. The effect of subarachnoid hemorrhage (SAH) on spontaneously released EDRF was investigated by injecting 5 ml of blood into the cisterna magna and sacrificing the rabbits 2 days later. Arteries after SAH showed a significant reduction in hemoglobin-induced augmentation compared to that seen in control arteries with intact endothelium. This result suggests that spontaneously released EDRF is significantly reduced after SAH. It is concluded that EDRF is released spontaneously in the rabbit basilar artery and that inhibition of its release might be involved in pathogenesis of cerebral vasospasm.


1996 ◽  
Vol 85 (5) ◽  
pp. 917-922 ◽  
Author(s):  
Hakan H. Caner ◽  
Aij-Lie Kwan ◽  
Adam Arthur ◽  
Arco Y. Jeng ◽  
Rodney W. Lappe ◽  
...  

✓ The potent vasoconstrictor peptide, endothelin-1 (ET-1), has been implicated in the pathophysiology of cerebral vasospasm that occurs after subarachnoid hemorrhage (SAH). This peptide is synthesized as a large prepropeptide that requires a series of modifying steps for its activation. The last of these steps involves the proteolytic conversion of a relatively inactive propeptide, Big ET-1, to its active, 21—amino acid peptide form. The enzyme responsible for converting Big ET-1 to ET-1 is a metalloprotease called endothelin-converting enzyme (ECE). In the present study the authors examined the effects of a newly developed inhibitor of ECE on responses to ET peptides in the normal basilar artery and on pathophysiological constriction in the spastic basilar artery after SAH. In the first series of experiments the authors examined normal basilar arteries in the rabbit, which were exposed transclivally and measured on-line using videomicroscopy. Intravenous administration or topical application of an active inhibitor of ECE, CGS 26303, blocked vasoconstrictor responses to topically applied Big ET-1 but not to ET-1. In contrast, topical application of a structurally related compound that does not inhibit ECE, CGS 24592, was ineffective in blocking vasoconstriction that was elicited by a topical application of Big ET-1. These findings indicate that CGS 26303 when administered systemically is capable of blocking the conversion of Big ET-1 to ET-1 in the basilar artery without affecting the ability of the vessel to respond to ET-1. In the second series of experiments the authors examined the effects of the ECE inhibitor on cerebral vasospasm after experimental SAH. Intraperitoneal administration of CGS 26303 via osmotic minipumps significantly attenuated the delayed spastic response of the basilar artery to an intracisternal injection of autologous blood. This study provides the first evidence that systemic administration of an inhibitor of ECE is capable of preventing cerebral vasospasm after SAH. The results reinforce a growing body of evidence that ETs play a critical role in the development of spastic constriction after SAH. Moreover, the findings indicate that blocking the conversion of Big ET-1 to its active ET-1 form using CGS 26303 may represent a feasible strategy for ameliorating cerebral vasospasm.


1973 ◽  
Vol 39 (6) ◽  
pp. 730-734 ◽  
Author(s):  
Eric W. Peterson ◽  
Roger Searle ◽  
Francis F. Mandy ◽  
Richard Leblanc

✓ Topical dibutyryl cyclic adenosine monophosphate (AMP) was used to reverse experimental cerebral vasospasm of the basilar artery in the cat. The combination of dibutyryl cyclic AMP and theophylline caused prolonged dilatation of the basilar artery. Dibutyryl cyclic AMP seems to be specific as a topical vasodilator, which may be useful in the postoperative management of subarachnoid hemorrhage.


Sign in / Sign up

Export Citation Format

Share Document