Does new magnetic resonance imaging technology provide better geometrical accuracy during stereotactic imaging?

2005 ◽  
Vol 102 ◽  
pp. 8-13 ◽  
Author(s):  
Josef Novotny ◽  
Josef Vymazal ◽  
Josef Novotny ◽  
Daniela Tlachacova ◽  
Michal Schmitt ◽  
...  

Object.The authors sought to compare the accuracy of stereotactic target imaging using the Siemens 1T EXPERT and 1.5T SYMPHONY magnetic resonance (MR) units.Methods.A water-filled cylindrical Perspex phantom with axial and coronal inserts containing grids of glass rods was fixed in the Leksell stereotactic frame and subjected to MR imaging in Siemens 1T EXPERT and Siemens 1.5T SYMPHONY units. Identical sequences were used for each unit. The images were transferred to the GammaPlan treatment planning system. Deviations between stereotactic coordinates based on MR images and estimated real geometrical positions given by the construction of the phantom insert were evaluated for each study. The deviations were further investigated as a function of the MR unit used, MR sequence, the image orientation, and the spatial position of measured points in the investigated volume.Conclusions.Larger distortions were observed when using the SYMPHONY 1.5T unit than those with the EXPERT 1T unit. Typical average distortion in EXPERT 1T was not more than 0.6 mm and 0.9 mm for axial and coronal images, respectively. Typical mean distortion for SYMPHONY 1.5T was not more than 1 mm and 1.3 mm for axial and coronal images, respectively. The image sequence affected the distortions in both units. Coronal T2-weighted spin-echo images performed in subthalamic imaging produced the largest distortions of 2.6 mm and 3 mm in the EXPERT 1T and SYMPHONY 1.5T, respectively. Larger distortions were observed in coronal slices than in axial slices in both units, and this effect was more pronounced in SYMPHONY 1.5T. Noncentrally located slice positions in the investigated volume of the phantom were associated with larger distortions.

2005 ◽  
Vol 102 (Special_Supplement) ◽  
pp. 8-13 ◽  
Author(s):  
Josef Novotny ◽  
Josef Vymazal ◽  
Josef Novotny ◽  
Daniela Tlachacova ◽  
Michal Schmitt ◽  
...  

Object. The authors sought to compare the accuracy of stereotactic target imaging using the Siemens 1T EXPERT and 1.5T SYMPHONY magnetic resonance (MR) units. Methods. A water-filled cylindrical Perspex phantom with axial and coronal inserts containing grids of glass rods was fixed in the Leksell stereotactic frame and subjected to MR imaging in Siemens 1T EXPERT and Siemens 1.5T SYMPHONY units. Identical sequences were used for each unit. The images were transferred to the GammaPlan treatment planning system. Deviations between stereotactic coordinates based on MR images and estimated real geometrical positions given by the construction of the phantom insert were evaluated for each study. The deviations were further investigated as a function of the MR unit used, MR sequence, the image orientation, and the spatial position of measured points in the investigated volume. Conclusions. Larger distortions were observed when using the SYMPHONY 1.5T unit than those with the EXPERT 1T unit. Typical average distortion in EXPERT 1T was not more than 0.6 mm and 0.9 mm for axial and coronal images, respectively. Typical mean distortion for SYMPHONY 1.5T was not more than 1 mm and 1.3 mm for axial and coronal images, respectively. The image sequence affected the distortions in both units. Coronal T2-weighted spin-echo images performed in subthalamic imaging produced the largest distortions of 2.6 mm and 3 mm in the EXPERT 1T and SYMPHONY 1.5T, respectively. Larger distortions were observed in coronal slices than in axial slices in both units, and this effect was more pronounced in SYMPHONY 1.5T. Noncentrally located slice positions in the investigated volume of the phantom were associated with larger distortions.


1996 ◽  
Vol 85 (2) ◽  
pp. 299-309 ◽  
Author(s):  
Aaron G. Filler ◽  
Michel Kliot ◽  
Franklyn A. Howe ◽  
Cecil E. Hayes ◽  
Dawn E. Saunders ◽  
...  

✓ Currently, diagnosis and management of disorders involving nerves are generally undertaken without images of the nerves themselves. The authors evaluated whether direct nerve images obtained using the new technique of magnetic resonance (MR) neurography could be used to make clinically important diagnostic distinctions that cannot be readily accomplished using existing methods. The authors obtained T2-weighted fast spin—echo fat-suppressed (chemical shift selection or inversion recovery) and T1-weighted images with planes parallel or transverse to the long axis of nerves using standard or phased-array coils in healthy volunteers and referred patients in 242 sessions. Longitudinal and cross-sectional fascicular images readily distinguished perineural from intraneural masses, thus predicting both resectability and requirement for intraoperative electrophysiological monitoring. Fascicle pattern and longitudinal anatomy firmly identified nerves and thus improved the safety of image-guided procedures. In severe trauma, MR neurography identified nerve discontinuity at the fascicular level preoperatively, thus verifying the need for surgical repair. Direct images readily demonstrated increased diameter in injured nerves and showed the linear extent and time course of image hyperintensity associated with nerve injury. These findings confirm and precisely localize focal nerve compressions, thus avoiding some exploratory surgery and allowing for smaller targeted exposures when surgery is indicated. Direct nerve imaging can demonstrate nerve continuity, distinguish intraneural from perineural masses, and localize nerve compressions prior to surgical exploration. Magnetic resonance neurography can add clinically useful diagnostic information in many situations in which physical examinations, electrodiagnostic tests, and existing image techniques are inconclusive.


2004 ◽  
Vol 100 (1) ◽  
pp. 2-6 ◽  
Author(s):  
Vaijayantee Kulkarni ◽  
Vedantam Rajshekhar ◽  
Lakshminarayan Raghuram

Object. The authors studied whether cervical spine motion segments adjacent to a fused segment exhibit accelerated degenerative changes on short-term follow-up magnetic resonance (MR) imaging. Methods. Preoperative and short-term follow-up (mean duration 17.5 months, range 10–48 months) cervical MR images obtained in 44 patients who had undergone one- or two-level corpectomy for cervical spondylotic myelopathy were evaluated qualitatively and quantitatively. The motion segment adjacent to the fused segment and a segment remote from the fused segment were evaluated for indentation of the thecal sac, disc height, and sagittal functional diameter of the spinal canal on midsagittal T2-weighted MR images. Thecal sac indentations were classifed as mild, moderate, and severe. New indentations of the thecal sac of varying severity (mild in 17 patients [38.6%], moderate in 10 [22.7%], and severe in six [13.6%]) had developed at the adjacent segments in 33 (75%) of 44 patients. The degenerative changes were seen at the superior level in 11 patients, inferior level in 10 patients, and at both levels in 12 patients and resulted from both anterior and posterior element degeneration in the majority (23 [69.6%]) of patients. The remote segments showed mild thecal sac indentations in seven patients and moderate indentations in two patients (nine [20.5%] of 44). Compared with the changes at the remote segment, the canal size was significantly decreased at the superior adjacent segment by 0.9 mm (p = 0.007). No patient sustained a new neurological deficit due to adjacent-segment changes. Conclusions. On short-term follow-up MR imaging, levels adjacent to the fused segment exhibited more pronounced degenerative changes (compared with remote levels) in 75% of patients who had undergone one- or two-level central corpectomy.


2002 ◽  
Vol 97 (3) ◽  
pp. 591-597 ◽  
Author(s):  
Emmanuel Cuny ◽  
Dominique Guehl ◽  
Pierre Burbaud ◽  
Christian Gross ◽  
Vincent Dousset ◽  
...  

Object. The goal of this study was to determine the most suitable procedure(s) to localize the optimal site for high-frequency stimulation of the subthalamic nucleus (STN) for the treatment of advanced Parkinson disease. Methods. Stereotactic coordinates of the STN were determined in 14 patients by using three different methods: direct identification of the STN on coronal and axial T2-weighted magnetic resonance (MR) images and indirect targeting in which the STN coordinates are referred to the anterior commissure—posterior commissure (AC—PC) line, which, itself, is determined either by using stereotactic ventriculography or reconstruction from three-dimensional (3D) MR images. During the surgical procedure, electrode implantation was guided by single-unit microrecordings on multiple parallel trajectories and by clinical assessment of stimulations. The site where the optimal functional response was obtained was considered to be the best target. Computerized tomography scanning was performed 3 days later and the scans were combined with preoperative 3D MR images to transfer the position of the best target to the same system of stereotactic coordinates. An algorithm was designed to convert individual stereotactic coordinates into an all-purpose PC-referenced system for comparing the respective accuracy of each method of targeting, according to the position of the best target. Conclusions. The target that is directly identified by MR imaging is more remote (mainly in the lateral axis) from the site of the optimal functional response than targets obtained using other procedures, and the variability of this method in the lateral and superoinferior axes is greater. In contrast, the target defined by 3D MR imaging is closest to the target of optimal functional response and the variability of this method is the least great. Thus, 3D reconstruction adjusted to the AC—PC line is the most accurate technique for STN targeting, whereas direct visualization of the STN on MR images is the least effective. Electrophysiological guidance makes it possible to correct the inherent inaccuracy of the imaging and surgical techniques and is not designed to modify the initial targeting.


2005 ◽  
Vol 103 (5) ◽  
pp. 837-840 ◽  
Author(s):  
Mandy J. Binning ◽  
Oren N. Gottfried ◽  
Anne G. Osborn ◽  
William T. Couldwell

Object. The fluid content of Rathke cleft cysts (RCCs) displays variable appearances on magnetic resonance (MR) images and can appear indistinguishable from other intrasellar or suprasellar cystic lesions. Intracystic nodules associated with individual RCCs have been noted, but to date their significance has not been fully explored. Methods. The authors retrospectively reviewed MR imaging studies obtained in patients harboring intrasellar or suprasellar lesions that were consistent with RCCs to identify the presence and imaging characteristics of intracystic nodules. An intracystic nodule was present in nine (45%) of 20 patients with an RCC. All intracystic nodules were clearly visible and displayed a characteristic low signal intensity on T2-weighted MR images. The nodule was only visualized on T1-weighted images in four cases, in which it exhibited a consistent high signal intensity similar to that of the cyst fluid. The nodules did not enhance following the intravenous administration of a contrast agent. Conclusions. Although it is difficult to differentiate RCCs from other sellar cystic lesions because of the variable signal intensities displayed on MR images, the intensity of the intracystic nodule seems consistent on T1- and T2-weighted images, and the nodule is always clearly visible on T2-weighted images. With a nonenhancing cystic lesion that does not cause significant symptoms in the patient, the identification of an intracystic nodule with a characteristic signal intensity will aid in the diagnosis of RCC and the selection of conservative management.


1992 ◽  
Vol 76 (2) ◽  
pp. 261-274 ◽  
Author(s):  
Edward D. Wirth ◽  
Daniel P. Theele ◽  
Thomas H. Mareci ◽  
Douglas K. Anderson ◽  
Stacey A. Brown ◽  
...  

✓ Magnetic resonance (MR) imaging was evaluated for its possible diagnostic application in determining the survival of fetal central nervous system tissue grafts in the injured spinal cord. Hemisection cavities were made at the T11—L1 level of eight adult female cats. Immediately thereafter, several pieces of tissue, either obtained from the fetal cat brain stem on embryonic Day 37 (E-37), from the fetal neocortex on E-37, or from the fetal spinal cord on E-23, were implanted into the cavities made in seven cats. The eighth cat served as a control for the effect of the lesion only. In another group of four animals, a static-load compression injury was made at the L-2 level. Seven weeks later, the lesion was resected in three cases and fragments of either fetal brainstem or spinal cord tissue were introduced. A small cyst was observed in a fourth cat in the compression injury group and a suspension of dissociated E-23 brain-stem cells was injected into this region of cavitation without disturbing the surrounding leptomeninges. Five months to 2 years posttransplantation, MR imaging was performed with a 2.0-tesla VIS imaging spectrometer by acquiring multislice spin-echo images (TR 1000 msec, TE 30 msec) in both the transverse and sagittal planes. Collectively, these intermediate-weighted images revealed homogeneous, slightly hyperintense signals at the graft site relative to the neighboring host tissue in seven of the 11 graft recipients. Two of the remaining four cats exhibited signals from the graft site that were approximately isointense with the adjacent host spinal cord, and the final two cats and the lesion-only control presented with very hypointense transplant/resection regions. The hyperintense and isointense images were tentatively interpreted as representing viable graft tissue, whereas the hypointense transplant/resection sites were considered to be indicative of a lack of transplant survival or the absence of tissue in the lesion-only control animal. Postmortem gross inspection of fixed specimens and light microscopy verified the MR findings in the control animal in 10 of the 11 graft recipients by showing either transplants and/or cysts corresponding to the MR images obtained. In one cat in the hemisection group, histological analysis revealed a very small piece of graft tissue that was not detected on the MR images. Therefore, it is suggested that within certain spatial- and contrast-resolution limits, MR imaging can reliably detect the presence of transplanted neural tissue in both the hemisected and compression-injured spinal cord of living animals. Thus, MR imaging can serve as an important adjunct to histological, electrophysiological, and long-term behavioral analyses of graft-mediated anatomical and functional repair of the injured spinal cord. It is further suggested that this noninvasive diagnostic approach offers many advantages in terms of the judicious and optimum use of valuable animal models, and that these findings address an important prerequisite (in situ verification of transplant survival) for any future clinical trials involving these or equivalent neural tissue grafting approaches, when such are warranted.


2001 ◽  
Vol 95 (4) ◽  
pp. 687-693 ◽  
Author(s):  
Marga Spiller ◽  
Michael S. Tenner ◽  
William T. Couldwell

Object. Absorbable topical hemostatic agents are commonly used in neurosurgery. In this study the authors examine the longitudinal relaxation time (T1) of blood in contact with these agents over time, measured in vitro, to determine if their presence could affect the interpretation of postoperative magnetic resonance (MR) images. Methods. Coagulated and anticoagulated blood were used, both oxygenated and deoxygenated. The effects of a collagen-based agent (Collastat) and a cellulose-based agent (Surgicel) on the pH and T1 values of blood and on those of saline (used as a control) were investigated. The T1 was measured as a function of magnetic field strength and time by using a field-cycling relaxometer. This instrument measures 1/T1, the rate of T1, from which the T1 value is computed. The T1 values of blood were compared with those of hemostat-induced blood clots and with those of both gray and white matter of the brain. Signal changes on T1-weighted MR images were predicted on the basis of altered T1 values in vitro. Postoperative images were visually examined for the predicted changes. With the addition of Surgicel, blood had decreased pH and significantly shortened T1 at all fields, essentially within minutes, although it affected the T1 of saline only minimally. The effect of Surgicel increasingly shortened the T1 for 4 days in oxygenated blood. Collastat had no significant effect. The presence of some paramagnetic methemoglobin in Surgicel-induced clots was demonstrated using the relaxometer at a time when diamagnetic oxyhemoglobin would be present in naturally occurring blood clots. A bright signal that could mimic residual tumor on contrast-enhanced images was predicted and confirmed on postoperative T1-weighted MR images obtained in patients in whom Surgicel lined the tumor bed. It was not present in cases in which Surgicel was not used. Conclusions. Surgicel alters the appearance of early postoperative MR images. To avoid misinterpretation, clinicians should be aware of this phenomenon.


2002 ◽  
Vol 96 (3) ◽  
pp. 464-473 ◽  
Author(s):  
Klaus Novak ◽  
Thomas Czech ◽  
Daniela Prayer ◽  
Wolfgang Dietrich ◽  
Wolfgang Serles ◽  
...  

Object. The concept of selective amygdalohippocampectomy is based on pathophysiological insights into the epileptogenicity of the hippocampal region and the definition of the clinical syndrome of mesial temporal lobe epilepsy (TLE). High-resolution magnetic resonance (MR) imaging allows correlation of the site of histologically conspicuous tissue with anatomical structure. The highly variable sulcal pattern of the basal temporal lobe, however, definitely complicates the morphometric analysis of histomorphologically defined subdivisions of the hippocampal region. The goal of this study was to define individual variations in the sulcal anatomy on the basis of preoperative MR images obtained in patients suffering from TLE. Methods. The authors analyzed coronal MR images obtained in 50 patients for the presence of and intrinsic relationships among the rhinal, collateral, and occipitotemporal sulci. The surface relief of consecutive sections of 100 temporal lobes was graphically outlined and the resulting maps were used for visual analysis. The sulci were characterized by measurement of their depth, distance to the temporal horn, and laterality. The anatomical measurements and frequencies of sulcal patterns were assessed for statistical correlation with patients' histories and the lateralization of the seizure focus. Conclusions. Statistical assessment shows that patient sex is a significant factor in sulcal patterns. Anatomical measurements are significantly decreased on the side of the seizure origin, which relates to loss of white matter, a known morphological abnormality associated with TLE. Magnetic resonance imaging allows for accurate preoperative knowledge of individual sulcal patterns and facilitates intraoperative orientation to anatomical landmarks.


2004 ◽  
Vol 100 (3) ◽  
pp. 541-546 ◽  
Author(s):  
Erich O. Richter ◽  
Tasnuva Hoque ◽  
William Halliday ◽  
Andres M. Lozano ◽  
Jean A. Saint-Cyr

Object. The subthalamic nucleus (STN) is a target in surgery for Parkinson disease, but its location according to brain atlases compared with its position on an individual patient's magnetic resonance (MR) images is incompletely understood. In this study both the size and location of the STN based on MR images were compared with those on the Talairach and Tournoux, and Schaltenbrand and Wahren atlases. Methods. The position of the STN relative to the midcommissural point was evaluated on 18 T2-weighted MR images (2-mm slices). Of 35 evaluable STNs, the most anterior, posterior, medial, and lateral borders were determined from axial images, dorsal and ventral borders from coronal images. These methods were validated using histological measurements in one case in which a postmortem examination was performed. The mean length of the anterior commissure—posterior commissure was 25.8 mm. Subthalamic nucleus borders derived from MR imaging were highly variable: anterior, 4.1 to −3.7 mm relative to the midcommissural point; posterior, 4.2 to 10 mm behind the midcommissural point; medial, 7.9 to 12.1 mm from the midline; lateral, 12.3 to 15.4 mm from the midline; dorsal, 0.2 to 4.2 mm below the intercommissural plane; and ventral, 5.7 to 9.9 mm below the intercommissural plane. The position of the anterior border on MR images was more posterior, and the medial border more lateral, than its position in the brain atlases. The STN was smaller on MR images compared with its size in atlases in the anteroposterior (mean 5.9 mm), mediolateral (3.7 mm), and dorsoventral (5 mm) dimensions. Conclusions. The size and position of the STN are highly variable, appearing to be smaller and situated more posterior and lateral on MR images than in atlases. Care must be taken in relying on coordinates relative to the commissures for targeting of the STN.


1994 ◽  
Vol 81 (1) ◽  
pp. 20-23 ◽  
Author(s):  
Nobuhiko Aoki

✓ The pathological process of extracerebral fluid collections in infancy includes subdural effusion and enlargement of the subarachnoid spaces. Both conditions have traditionally been investigated as a single clinical entity, because of difficulty in differentiating between them. The prognosis of subdural effusion is not as benign as that of enlargement of subarachnoid spaces, requiring differential diagnosis between these disorders. The present study was conducted to elucidate whether this differentiation could be made on magnetic resonance (MR) images. The series consisted of 16 infants aged 10 months or younger, including eight with verified subdural effusion and eight in whom a diagnosis of enlargement of the subarachnoid spaces was achieved by neuroimaging studies other than MR imaging. In all eight patients with subdural effusion, the intensity of the fluid was greater than that of cerebrospinal fluid (CSF) in at least one of the sequences using T1-weighted, proton-density, and T2-weighted MR images. The flow-void sign, indicating vessels in the fluid spaces, was not seen in any of these eight patients. On the other hand, in all eight patients with enlargement of the subarachnoid spaces, the fluid was isointense in relation to CSF, and vascular flow-void areas were seen in at least one of the MR imaging sequences. Based on these observations, it is concluded that differentiation between subdural effusion and enlargement of the subarachnoid spaces can be established by focusing on two aspects of MR imaging findings: 1) the intensity of the fluid, which is either iso- or hyperintense relative to CSF, and 2) the presence or absence of vascular flow-void areas in the fluid spaces.


Sign in / Sign up

Export Citation Format

Share Document