Determining the position and size of the subthalamic nucleus based on magnetic resonance imaging results in patients with advanced Parkinson disease

2004 ◽  
Vol 100 (3) ◽  
pp. 541-546 ◽  
Author(s):  
Erich O. Richter ◽  
Tasnuva Hoque ◽  
William Halliday ◽  
Andres M. Lozano ◽  
Jean A. Saint-Cyr

Object. The subthalamic nucleus (STN) is a target in surgery for Parkinson disease, but its location according to brain atlases compared with its position on an individual patient's magnetic resonance (MR) images is incompletely understood. In this study both the size and location of the STN based on MR images were compared with those on the Talairach and Tournoux, and Schaltenbrand and Wahren atlases. Methods. The position of the STN relative to the midcommissural point was evaluated on 18 T2-weighted MR images (2-mm slices). Of 35 evaluable STNs, the most anterior, posterior, medial, and lateral borders were determined from axial images, dorsal and ventral borders from coronal images. These methods were validated using histological measurements in one case in which a postmortem examination was performed. The mean length of the anterior commissure—posterior commissure was 25.8 mm. Subthalamic nucleus borders derived from MR imaging were highly variable: anterior, 4.1 to −3.7 mm relative to the midcommissural point; posterior, 4.2 to 10 mm behind the midcommissural point; medial, 7.9 to 12.1 mm from the midline; lateral, 12.3 to 15.4 mm from the midline; dorsal, 0.2 to 4.2 mm below the intercommissural plane; and ventral, 5.7 to 9.9 mm below the intercommissural plane. The position of the anterior border on MR images was more posterior, and the medial border more lateral, than its position in the brain atlases. The STN was smaller on MR images compared with its size in atlases in the anteroposterior (mean 5.9 mm), mediolateral (3.7 mm), and dorsoventral (5 mm) dimensions. Conclusions. The size and position of the STN are highly variable, appearing to be smaller and situated more posterior and lateral on MR images than in atlases. Care must be taken in relying on coordinates relative to the commissures for targeting of the STN.

2002 ◽  
Vol 97 (3) ◽  
pp. 591-597 ◽  
Author(s):  
Emmanuel Cuny ◽  
Dominique Guehl ◽  
Pierre Burbaud ◽  
Christian Gross ◽  
Vincent Dousset ◽  
...  

Object. The goal of this study was to determine the most suitable procedure(s) to localize the optimal site for high-frequency stimulation of the subthalamic nucleus (STN) for the treatment of advanced Parkinson disease. Methods. Stereotactic coordinates of the STN were determined in 14 patients by using three different methods: direct identification of the STN on coronal and axial T2-weighted magnetic resonance (MR) images and indirect targeting in which the STN coordinates are referred to the anterior commissure—posterior commissure (AC—PC) line, which, itself, is determined either by using stereotactic ventriculography or reconstruction from three-dimensional (3D) MR images. During the surgical procedure, electrode implantation was guided by single-unit microrecordings on multiple parallel trajectories and by clinical assessment of stimulations. The site where the optimal functional response was obtained was considered to be the best target. Computerized tomography scanning was performed 3 days later and the scans were combined with preoperative 3D MR images to transfer the position of the best target to the same system of stereotactic coordinates. An algorithm was designed to convert individual stereotactic coordinates into an all-purpose PC-referenced system for comparing the respective accuracy of each method of targeting, according to the position of the best target. Conclusions. The target that is directly identified by MR imaging is more remote (mainly in the lateral axis) from the site of the optimal functional response than targets obtained using other procedures, and the variability of this method in the lateral and superoinferior axes is greater. In contrast, the target defined by 3D MR imaging is closest to the target of optimal functional response and the variability of this method is the least great. Thus, 3D reconstruction adjusted to the AC—PC line is the most accurate technique for STN targeting, whereas direct visualization of the STN on MR images is the least effective. Electrophysiological guidance makes it possible to correct the inherent inaccuracy of the imaging and surgical techniques and is not designed to modify the initial targeting.


2002 ◽  
Vol 97 (5) ◽  
pp. 1152-1166 ◽  
Author(s):  
Jean A. Saint-Cyr ◽  
Tasnuva Hoque ◽  
Luiz C. M. Pereira ◽  
Jonathan O. Dostrovsky ◽  
William D. Hutchison ◽  
...  

Object. The authors sought to determine the location of deep brain stimulation (DBS) electrodes that were most effective in treating Parkinson disease (PD). Methods. Fifty-four DBS electrodes were localized in and adjacent to the subthalamic nucleus (STN) postoperatively by using magnetic resonance (MR) imaging in a series of 29 patients in whom electrodes were implanted for the treatment of medically refractory PD, and for whom quantitative clinical assessments were available both pre- and postoperatively. A novel MR imaging sequence was developed that optimized visualization of the STN. The coordinates of the tips of these electrodes were calculated three dimensionally and the results were normalized and corrected for individual differences by using intraoperative neurophysiological data (mean 5.13 mm caudal to the midcommissural point [MCP], 8.46 mm inferior to the anterior commissure—posterior commissure [AC—PC], and 10.2 mm lateral to the midline). Despite reported concerns about distortion on the MR image, reconstructions provided consistent data for the localization of electrodes. The neurosurgical procedures used, which were guided by combined neuroimaging and neurophysiological methods, resulted in the consistent placement of DBS electrodes in the subthalamus and mesencephalon such that the electrode contacts passed through the STN and dorsally adjacent fields of Forel (FF) and zona incerta (ZI). The mean location of the clinically effective contacts was in the anterodorsal STN (mean 1.62 mm posterior to the MCP, 2.47 mm inferior to the AC—PC, and 11.72 mm lateral to the midline). Clinically effective stimulation was most commonly directed at the anterodorsal STN, with the current spreading into the dorsally adjacent FF and ZI. Conclusions. The anatomical localization of clinically effective electrode contacts provided in this study yields useful information for the postoperative programming of DBS electrodes.


2004 ◽  
Vol 100 (4) ◽  
pp. 611-618 ◽  
Author(s):  
Pantaleo Romanelli ◽  
Gary Heit ◽  
Bruce C. Hill ◽  
Alli Kraus ◽  
Trevor Hastie ◽  
...  

Object. The subthalamic nucleus (STN) is a key structure for motor control through the basal ganglia. The aim of this study was to show that the STN in patients with Parkinson disease (PD) has a somatotopic organization similar to that in nonhuman primates. Methods. A functional map of the STN was obtained using electrophysiological microrecording during placement of deep brain stimulation (DBS) electrodes in patients with PD. Magnetic resonance imaging was combined with ventriculography and intraoperative x-ray film to assess the position of the electrodes and the STN units, which were activated by limb movements to map the sensorimotor region of the STN. Each activated cell was located relative to the anterior commissure—posterior commissure line. Three-dimensional coordinates of the cells were analyzed statistically to determine whether those cells activated by movements of the arm and leg were segregated spatially. Three hundred seventy-nine microelectrode tracks were created during placement of 71 DBS electrodes in 44 consecutive patients. Somatosensory driving was found in 288 tracks. The authors identified and localized 1213 movement-related cells and recorded responses from 29 orofacial cells, 480 arm-related cells, 558 leg-related cells, and 146 cells responsive to both arm and leg movements. Leg-related cells were localized in medial (p < 0.0001) and ventral (p < 0.0004) positions and tended to be situated anteriorly (p = 0.063) relative to arm-related cells. Conclusions. Evidence of somatotopic organization in the STN in patients with PD supports the current theory of highly segregated loops integrating cortex—basal ganglia connections. These loops are preserved in chronic degenerative diseases such as PD, but may subserve a distorted body map. This finding also supports the relevance of microelectrode mapping in the optimal placement of DBS electrodes along the subthalamic homunculus.


2003 ◽  
Vol 99 (1) ◽  
pp. 89-99 ◽  
Author(s):  
Jérôme Yelnik ◽  
Philippe Damier ◽  
Sophie Demeret ◽  
David Gervais ◽  
Eric Bardinet ◽  
...  

Object. The aim of this study was to correlate the clinical improvement in patients with Parkinson disease (PD) treated using deep brain stimulation (DBS) of the subthalamic nucleus (STN) with the precise anatomical localization of stimulating electrodes. Methods. Localization was determined by superimposing figures from an anatomical atlas with postoperative magnetic resonance (MR) images obtained in each patient. This approach was validated by an analysis of experimental and clinical MR images of the electrode, and the development of a three-dimensional (3D) atlas—MR imaging coregistration method. The PD motor score was assessed through two contacts for each of two electrodes implanted in 10 patients: the “therapeutic contact” and the “distant contact” (that is, the next but one to the therapeutic contact). Seventeen therapeutic contacts were located within or on the border of the STN, most of which were associated with significant improvement of the four PD symptoms tested. Therapeutic contacts located in other structures (zona incerta, lenticular fasciculus, or midbrain reticular formation) were also linked to a significant positive effect. Stimulation applied through distant contacts located in the STN improved symptoms of PD, whereas that delivered through distant contacts in the remaining structures had variable effects ranging from worsening of symptoms to their improvement. Conclusions. The authors have demonstrated that 3D atlas—MR imaging coregistration is a reliable method for the precise localization of DBS electrodes on postoperative MR images. In addition, they have confirmed that although the STN is the main target during DBS treatment for PD, stimulation of surrounding regions, particularly the zona incerta or the lenticular fasciculus, can also improve symptoms of PD.


1999 ◽  
Vol 90 (1) ◽  
pp. 94-100 ◽  
Author(s):  
Charles G. diPierro ◽  
Paul C. Francel ◽  
Theodore R. Jackson ◽  
Toshifumi Kamiryo ◽  
Edward R. Laws

Object. Some of the earliest successful frame-based stereotactic interventions directed toward the thalamus and basal ganglia depended on identifying the anterior commissure (AC) and posterior commissure (PC) in a sagittal ventriculogram and defining the intercommissural line that connects them in the midsagittal plane. The AC—PC line became the essential landmark for the localization of neuroanatomical targets in the basal ganglia and diencephalon and for relating them to stereotactic atlases.Stereotactic/functional neurosurgery has come to rely increasingly on magnetic resonance (MR) imaging guidance, and methods for accurately determining the AC—PC line on MR imaging are being developed. The goal of the present article is to present the authors' technique.Methods. The technique described uses MR sequences that minimize geometric distortion and registration error, thereby maximizing accuracy in AC—PC line determinations from axially displayed MR data. The technique is based on the authors' experience with the Leksell G-frame but can be generalized to other MR imaging—based stereotactic systems.This methodology has been used in a series of 62 stereotactic procedures in 47 adults (55 pallidotomies and seven thalamotomies) with preliminary results that compare favorably with results reported when using microelectrode recordings. The measurements of the AC—PC line reported here also compare favorably with those based on ventriculography and computerized tomography scanning.Conclusions. The methodology reported here is critical in maintaining the accuracy and utility of MR imaging as its role in modern stereotaxy expands. Accurate parameters such as these aid in ensuring the safety, efficacy, and reproducibility of MR-guided stereotactic procedures.


2001 ◽  
Vol 95 (6) ◽  
pp. 990-997 ◽  
Author(s):  
Antonio A. F. De Salles ◽  
William P. Melega ◽  
Goran Laćan ◽  
Lisa J. Steele ◽  
Timothy D. Solberg

Object. Radiosurgery for functional neurosurgery performed using a linear accelerator (LINAC) has not been extensively characterized in preclinical studies. In the present study, the properties of a newly designed 3-mm-diameter collimator were evaluated in a dedicated LINAC, which produced lesions in the basal ganglia of vervet monkeys. Lesion formation was determined in vivo in three animals by examining magnetic resonance (MR) images to show the dosedelivery precision of targeting and the geometry and extent of the lesions. Postmortem immunohistochemical studies were conducted to determine the extent of lesion-induced radiobiological effects. Methods. In three male vervet monkeys, the subthalamic nucleus (STN; one animal) and the pars compacta of the lateral substantia nigra (SN; two animals) were targeted by a Novalis Shaped Beam Surgery System that included a 3-mm collimator and delivered a maximum dose of 150 Gy. Magnetic resonance images obtained 4, 5, and 9 months posttreatment were reviewed, and the animals were killed so that immunohistological characterizations could be made. Conclusions. The generation of precise radiosurgical lesions by a 3-mm collimator was validated in studies that targeted the basal ganglia of the vervet monkey. The extent of the lesions created in all animals remained restricted in diameter (< 3 mm) throughout the duration of the studies, as assessed by reviewing MR images. Histological studies showed that the lesions were contained within the STN and SN target areas and that there were persistent increases in glial fibrillary acidic protein immunoreactivity. Increases in immunoreactivity for tyrosine hydroxylase, the serotonin transporter, and the GluR1 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionate glutamate receptor in penumbral regions of the lesion were suggestive of compensatory neuronal adaptations. This radiosurgical approach may be of particular interest for the induction of lesions of the STN and SN in studies of experimental parkinsonism, as well as for the development of potential radiosurgical treatments for Parkinson disease.


2002 ◽  
Vol 96 (4) ◽  
pp. 666-672 ◽  
Author(s):  
Tanya Simuni ◽  
Jurg L. Jaggi ◽  
Heather Mulholland ◽  
Howard I. Hurtig ◽  
Amy Colcher ◽  
...  

Object. Palliative neurosurgery has reemerged as a valid therapy for patients with advanced Parkinson disease (PD) that is complicated by severe motor fluctuations. Despite great enthusiasm for long-term deep brain stimulation (DBS) of the subthalamic nucleus (STN), existing reports on this treatment are limited. The present study was designed to investigate the safety and efficacy of bilateral stimulation of the STN for the treatment of PD. Methods. In 12 patients with severe PD, electrodes were stereotactically implanted into the STN with the assistance of electrophysiological conformation of the target location. All patients were evaluated preoperatively during both medication-off and -on conditions, as well as postoperatively at 3, 6, and 12 months during medication-on and -off states and stimulation-on and -off conditions. Tests included assessments based on the Unified Parkinson's Disease Rating Scale (UPDRS) and timed motor tests. The stimulation effect was significant in patients who were in the medication-off state, resulting in a 47% improvement in the UPDRS Part III (Motor Examination) score at 12 months, compared with preoperative status. The benefit was stable for the duration of the follow-up period. Stimulation produced no additional benefit during the medication-on state, however, when compared with patient preoperative status. Significant improvements were made in reducing dyskinesias, fluctuations, and duration of off periods. Conclusions. This study demonstrates that DBS of the STN is an effective treatment for patients with advanced, medication-refractory PD. Deep brain stimulation of the STN produced robust improvements in motor performance in these severely disabled patients while they were in the medication-off state. Serious adverse events were common in this cohort; however, only two patients suffered permanent sequelae.


2004 ◽  
Vol 100 (1) ◽  
pp. 2-6 ◽  
Author(s):  
Vaijayantee Kulkarni ◽  
Vedantam Rajshekhar ◽  
Lakshminarayan Raghuram

Object. The authors studied whether cervical spine motion segments adjacent to a fused segment exhibit accelerated degenerative changes on short-term follow-up magnetic resonance (MR) imaging. Methods. Preoperative and short-term follow-up (mean duration 17.5 months, range 10–48 months) cervical MR images obtained in 44 patients who had undergone one- or two-level corpectomy for cervical spondylotic myelopathy were evaluated qualitatively and quantitatively. The motion segment adjacent to the fused segment and a segment remote from the fused segment were evaluated for indentation of the thecal sac, disc height, and sagittal functional diameter of the spinal canal on midsagittal T2-weighted MR images. Thecal sac indentations were classifed as mild, moderate, and severe. New indentations of the thecal sac of varying severity (mild in 17 patients [38.6%], moderate in 10 [22.7%], and severe in six [13.6%]) had developed at the adjacent segments in 33 (75%) of 44 patients. The degenerative changes were seen at the superior level in 11 patients, inferior level in 10 patients, and at both levels in 12 patients and resulted from both anterior and posterior element degeneration in the majority (23 [69.6%]) of patients. The remote segments showed mild thecal sac indentations in seven patients and moderate indentations in two patients (nine [20.5%] of 44). Compared with the changes at the remote segment, the canal size was significantly decreased at the superior adjacent segment by 0.9 mm (p = 0.007). No patient sustained a new neurological deficit due to adjacent-segment changes. Conclusions. On short-term follow-up MR imaging, levels adjacent to the fused segment exhibited more pronounced degenerative changes (compared with remote levels) in 75% of patients who had undergone one- or two-level central corpectomy.


2004 ◽  
Vol 1 (3) ◽  
pp. 273-280 ◽  
Author(s):  
L. Fernando Gonzalez ◽  
David Fiorella ◽  
Neil R. Crawford ◽  
Robert C. Wallace ◽  
Iman Feiz-Erfan ◽  
...  

Object. The authors sought to establish radiological criteria for the diagnosis of C1–2 vertical distraction injuries. Methods. Conventional radiography, computerized tomography (CT), and magnetic resonance (MR) imaging findings in five patients with a C1–2 vertical distraction injury were correlated with their clinical history, operative findings, and autopsy findings. The basion—dens interval (BDI) and the C-1 and C-2 lateral mass interval (LMI) were measured in 93 control patients who underwent CT angiography; these measurements were used to define the normal BDI and LMI. The MR imaging results obtained in 30 healthy individuals were used to characterize the normal signal intensity of the C1–2 joint. The MR imaging results were compared with MR images obtained in five patients with distraction injuries. In the 93 patients, the BDI averaged 4.7 mm (standard deviation [SD] 1.7 mm, range 0.6–9 mm) and the LMI averaged 1.7 mm (SD 0.48 mm, range 0.7–3.3 mm). Based on CT scanning in the five patients with distraction injuries, the BDIs (mean 11.9 mm, SD 3.2 mm; p < 0.001) and LMIs (mean 5.5 mm, SD 2 mm; p < 0.0001) were significantly greater than in the control group. Fast—spin echo inversion-recovery MR images obtained in these five patients revealed markedly increased signal distributed throughout the C1–2 lateral mass articulations bilaterally. Conclusions. In 95% of healthy individuals, the LMI ranged between 0.7 and 2.6 mm. An LMI greater than 2.6 mm indicates the possibility of a distraction injury, which can be confirmed using MR imaging. Patients with a suspected C1–2 distraction injury may be candidates for surgical fusion of C1–2.


2005 ◽  
Vol 103 (5) ◽  
pp. 837-840 ◽  
Author(s):  
Mandy J. Binning ◽  
Oren N. Gottfried ◽  
Anne G. Osborn ◽  
William T. Couldwell

Object. The fluid content of Rathke cleft cysts (RCCs) displays variable appearances on magnetic resonance (MR) images and can appear indistinguishable from other intrasellar or suprasellar cystic lesions. Intracystic nodules associated with individual RCCs have been noted, but to date their significance has not been fully explored. Methods. The authors retrospectively reviewed MR imaging studies obtained in patients harboring intrasellar or suprasellar lesions that were consistent with RCCs to identify the presence and imaging characteristics of intracystic nodules. An intracystic nodule was present in nine (45%) of 20 patients with an RCC. All intracystic nodules were clearly visible and displayed a characteristic low signal intensity on T2-weighted MR images. The nodule was only visualized on T1-weighted images in four cases, in which it exhibited a consistent high signal intensity similar to that of the cyst fluid. The nodules did not enhance following the intravenous administration of a contrast agent. Conclusions. Although it is difficult to differentiate RCCs from other sellar cystic lesions because of the variable signal intensities displayed on MR images, the intensity of the intracystic nodule seems consistent on T1- and T2-weighted images, and the nodule is always clearly visible on T2-weighted images. With a nonenhancing cystic lesion that does not cause significant symptoms in the patient, the identification of an intracystic nodule with a characteristic signal intensity will aid in the diagnosis of RCC and the selection of conservative management.


Sign in / Sign up

Export Citation Format

Share Document