Modeling of filtration processes in periodic porous media

Author(s):  
Gennadiy Sandrakov ◽  
Andrii Hulianytskyi ◽  
Vladimir Semenov

Modeling of dynamic processes of diffusion and filtration of liquids in porous media are discussed. The media are formed by a large number of blocks with low permeability, and separated by a connected system of faults with high permeability. The modeling is based on solving initial boundary value problems for parabolic equations of diffusion and filtration in porous media. The structure of the media leads to the dependence of the equations on a small parameter. Assertions on the solvability and regularity of such problems and the corresponding homogenized convolution problems are considered. The statements are actual for the numerical solution of this problem with guaranteed accuracy that is necessary to model the considered processes.

2011 ◽  
Vol 18 (3) ◽  
pp. 441-463
Author(s):  
Gia Avalishvili ◽  
Mariam Avalishvili

Abstract The present paper deals with nonclassical initial-boundary value problems for parabolic equations and systems and their generalizations in abstract spaces. Nonclassical problems with nonlocal initial conditions for an abstract first-order evolution equation with time-dependent operator are considered, the existence and uniqueness results are proved and the algorithm of approximation of nonlocal problems by a sequence of classical problems is constructed. Applications of the obtained general results to initial-boundary value problems for parabolic equations and systems are considered.


Author(s):  
G. V. Sandrakov ◽  
A. L. Hulianytskyi

Initial boundary value problems for nonstationary equations of diffusion and filtration in weakly porous media are considered. Assertions about the solvability of such problems and the corresponding homogenized problems with convolutions are given. These statements are proved for general initial data and inhomogeneous initial conditions and are generalizations of classical results on the solvability of initial-boundary value problems for the heat equation. The proofs use the methods of a priori estimates and the well-known Agranovich–Vishik method, developed to study parabolic problems of general type.


2007 ◽  
Vol 60 (3) ◽  
pp. 87-106 ◽  
Author(s):  
A. P. S. Selvadurai

This article presents an overview of the application of analytical methods in the theories of elasticity, poroelasticity, flow, and transport in porous media and plasticity to the solution of boundary value problems and initial boundary value problems of interest to geomechanics. The paper demonstrates the role of the analytical method in geomechanics in providing useful results that have practical importance, pedagogic value, and serve as benchmarking tools for calibrating computational methodologies that are ultimately used for solving more complex practical problems in geomechanics. There are 315 references cited in this article.


Sign in / Sign up

Export Citation Format

Share Document