Influence of fire exposure on the flexural behavior of macro-synthetic fiber reinforced concrete

Author(s):  
R. SERAFINI ◽  
S.R.A. DANTAS ◽  
R.R. AGRA ◽  
A.D. FIGUEIREDO
2021 ◽  
pp. 509-517
Author(s):  
Dinh Van Hiep ◽  
Nguyen Cong Thang ◽  
Nguyen Van Khanh ◽  
Masaya Aihara ◽  
Tadaaki Nozawa ◽  
...  

2019 ◽  
Vol 46 (12) ◽  
pp. 1081-1089 ◽  
Author(s):  
Hossein Karimzadeh ◽  
Ali Razmi ◽  
Reza Imaninasab ◽  
Afshin Esminejad

This paper evaluated mixed mode I/II fracture toughness of fiber-reinforced concrete using cracked semi-circular bend (SCB) specimens subjected to three-point bending test. Additionally, a comparison was made between the experimental results and the estimations made by different theoretical criteria. Natural and synthetic fibers at various concentrations were used in this study. After producing cracks in SCB specimens at different inclination angles to induce different mixed mode loading conditions (from pure mode I to II), the fracture toughness of SCB specimens was determined. Furthermore, the compressive, splitting tensile, and flexural strength of natural and synthetic fiber-reinforced concrete were measured after 7 and 28 days of curing. While there is an increase in the aforementioned strengths with fiber content increase, 0.3% was found to be the optimum percentage regarding fracture toughness for both fibers. Also, the comparison between the experimental and theoretical results showed that generalized maximum tangential stress criterion estimated the experimental data satisfactorily.


2017 ◽  
Vol 4 (6) ◽  
pp. 26-30 ◽  
Author(s):  
M Devi ◽  
◽  
L Kannan ◽  
M.Ganesh kumar ◽  
T.S.Venkat achalam

Sign in / Sign up

Export Citation Format

Share Document