The influence of natural and synthetic fibers on mixed mode I/II fracture behavior of cement concrete materials

2019 ◽  
Vol 46 (12) ◽  
pp. 1081-1089 ◽  
Author(s):  
Hossein Karimzadeh ◽  
Ali Razmi ◽  
Reza Imaninasab ◽  
Afshin Esminejad

This paper evaluated mixed mode I/II fracture toughness of fiber-reinforced concrete using cracked semi-circular bend (SCB) specimens subjected to three-point bending test. Additionally, a comparison was made between the experimental results and the estimations made by different theoretical criteria. Natural and synthetic fibers at various concentrations were used in this study. After producing cracks in SCB specimens at different inclination angles to induce different mixed mode loading conditions (from pure mode I to II), the fracture toughness of SCB specimens was determined. Furthermore, the compressive, splitting tensile, and flexural strength of natural and synthetic fiber-reinforced concrete were measured after 7 and 28 days of curing. While there is an increase in the aforementioned strengths with fiber content increase, 0.3% was found to be the optimum percentage regarding fracture toughness for both fibers. Also, the comparison between the experimental and theoretical results showed that generalized maximum tangential stress criterion estimated the experimental data satisfactorily.

Author(s):  
Ninghui Liang ◽  
Lianxi Ren ◽  
Shuo Tian ◽  
Xinrong Liu ◽  
Zuliang Zhong ◽  
...  

AbstractTo study the hybrid effects of polypropylene fiber and basalt fiber on the fracture toughness of concrete, 13 groups of notched concrete beam specimens with different fiber contents and mass ratios were prepared for the three-point bending test. Based on acoustic emission monitoring data, the initiation cracking load and instability load of each group of specimens were obtained, and the fracture toughness parameters were calculated according to the double-K fracture criterion. The test results show that the basalt fiber-reinforced concrete has a greater increase in initial fracture toughness, and the toughness of coarse polypropylene fiber-reinforced concrete is more unstable. Moreover, after the coarse polypropylene fiber content reaches 6 kg/m3 and the basalt fiber content reaches 3 kg/m3, increasing the content will not significantly improve the fracture toughness of the concrete. The polypropylene–basalt fiber will produce positive and negative effects when mixed, and the mass ratio of 2:1 was optimal. Finally, the fitting analysis revealed that the fracture process of polypropylene–basalt fiber-reinforced concrete (PBFRC) can be objectively described by the bilinear softening constitutive curve improved by Xu and Reinhardt.


Author(s):  
Saman Hedjazi ◽  
Daniel Castillo

This paper evaluates the effect of discrete fibers in concrete on the pulse velocity and mechanical properties of FRC. Two different type of synthetic fibers consisting of Polypropylene and Nylon were investigated. The effect of concrete mix proportions such as types of fiber, volume fraction of fiber, water-to-cement ratio (w/c), and curing conditions were examined. An experimental program was designed and conducted on 100 mm x 200 mm cylindrical specimens to evaluate the properties of FRC. The compressive strength obtained from the Compression Test Machine (CTM) was compared to those calculated from UPV. The difference between two types of synthetic fibers on concrete properties were investigated. Results show that the highest compressive strength of Polypropylene Fiber Reinforced Concrete (PFRC) was achieved at 0.5% fiber volume fraction, whereas for Nylon Fiber Reinforced Concrete (NFRC) the highest compressive strength was obtained at 1.0% fiber volume fraction. Additionally, results show that the available equations relating UPV to compressive strength of concrete need modifications when used for different fibers. Therefore, either new or modified empirical equations are needed for better estimation of mechanical properties of FRC.


1985 ◽  
Vol 64 ◽  
Author(s):  
Surendra P. Shah

ABSTRACTDespite its extensive use, low tensile strength has been recognized as one of the major drawbacks of concrete. Although one has learned to avoid exposing concrete structures to adverse static tensile load, these cannot be shielded from short duration dynamic tensile stresses. Such loads originate from sources such as impact from missiles and projectiles, wind gusts, earthquakes and machine vibrations. The need to accurately predict the structural response and reserve capacity under such loading has led to an interest in the mechanical properties of the component materials at high rates of straining.One method to improve the resistance of concrete when subjected to impact and/or impulsive loading is by the incorporation of randomly distributed short fibers. Concrete (or Mortar) so reinforced is termed fiber reinforced concrete (FRC). Moderate increase in tensile strength and significant increases in energy absorption (toughness or impact-resistance) have been reported by several investigators in static tests on concrete reinforced with randomly distributed short steel fibers. A theoretical model to predict fracture toughness of FRC is proposed. This model is based on the concept of nonlinear elastic fracture mechanics.As yet no standard test methods are available to quantify the impact resistance of such composites, although several investigators have employed a variety of tests including drop weight, swinging pendulums and the detonation of explosives. These tests though useful in ascertaining the relative merits of different composites do not yield basic material characteristics which can be used for design.The author has recently developed an instrumented Charpy type of impact test to obtain basic information such as load-deflection relationship, fracture toughness, crack velocity and load-strain history during an impact event. From this information, a damage based constitutive model was proposed. Relative improvements in performance due to the addition of fibers as observed in the instrumented tests are also compared with other conventional methods.


2013 ◽  
Vol 327 ◽  
pp. 201-204
Author(s):  
Jin Song Shi ◽  
Bo Yuan ◽  
Da Zhang Wang ◽  
Zhe An Lu

In order to investigate the difference of current toughness index standards for fiber reinforced concrete, two main groups of specimens were made to take bending toughness test with the requirements of corresponded standards, loading methods and loading speeds, which are ASTM C1018 in America, ACI 544 and JSCE G552 in Japan. United with software Origin, the load-deflection curves gathered from bending test was calculated with relative standards. The results show that the calculated toughness index value with ASTM C1018-98 in America is more accurate with three grades but the requested deflection of testing is much longer than others while ACI 544 and JSCE G552 in Japan are quite the contrary.


Author(s):  
Michael Dopko ◽  
Meysam Najimi ◽  
Behrouz Shafei ◽  
Xuhao Wang ◽  
Peter Taylor ◽  
...  

Fiber-reinforced concrete (FRC) is a promising construction material mainly because of the crack-controlling mechanisms that discrete fibers can impart to inherently brittle concrete. Macrofibers, in particular, have been proven effective for providing post-crack ductility and toughness, while synthetic fibers are a promising solution to avoid corrosion-related durability issues. To assess the performance enhancement provided by macro-synthetic concrete fibers, this study performs flexural tests on FRC beams containing three different types of macro-synthetic fibers. The selected fibers include polypropylene (PP), polyvinyl alcohol (PVA), and alkali-resistant glass (ARG) macrofibers mixed at volume fractions of 0.5%, 1.0%, and 1.5%. Static and dynamic fresh properties are monitored using the vibrating Kelly ball (VKelly) test. Beam specimens are then placed under a third point bending configuration, as per ASTM C1609 Standard, to measure load versus mid-span deflection. Strength and toughness parameters are derived from the load–deflection data to assess the flexural performance of the FRC composite systems under consideration. The parameters of interest include first peak strength (pre-crack flexural strength) and post-crack residual strength and toughness provided by fiber addition. Of the mixtures tested, ARG fiber mixtures show the highest residual strength and toughness values, followed by PP and PVA fiber mixtures. ARG fibers produce the most workable mixtures at all fiber volumes, while PVA fibers show a tendency to encounter dispersion issues at higher volume doses. The outcome of this study is expected to facilitate the selection of fibers by giving insight into their relative contribution to fresh and hardened flexural properties of FRC.


2016 ◽  
Vol 2 (5) ◽  
pp. 168-179
Author(s):  
Kian Aghani ◽  
Hassan Afshin

Different methods are used for retrofitting RC members. One of the new methods in this field is using externally bonded fiber-reinforced Concrete (FRC) sheets in order to increase RC member’s shear and flexural strength. In this study, applicability of ultra-high performance fiber-reinforced concrete sheets in shear and flexural retrofitting of RC beams was investigated. In total, eight RC beams (dimensions 10×20×150 cm) with two different bending capacity and lack of shear strength were used and were tested in 3-points bending test. Of these, four were control beams and four were retrofitted with laterally bonded UHPFRC sheets. Dimensions of the sheets used for retrofitting were (3×15×126 cm). Also FEM analysis was used to model the effect of The method. the results show that this method can be well used for retrofitting RC beams. In this method the way of connecting sheets to beam’s surfaces has a fundamental role in behavior of retrofitted beams.


Sign in / Sign up

Export Citation Format

Share Document