basalt fiber
Recently Published Documents


TOTAL DOCUMENTS

1388
(FIVE YEARS 754)

H-INDEX

40
(FIVE YEARS 12)

Author(s):  
Gopu Anil ◽  
◽  
Gomasa Ramesh ◽  

The invention of Self Compacting Concrete has been tremendous and continuing growth in the working area over the past decade, culminating in its widespread usage in today’s reality. It outperforms regular cement in application and completion, cost, work reserve funds, and solidity. The addition of strands enhances its qualities, particularly those related to SCC’s post- break behaviour. The goal is to investigate the strength properties of SCC when mixed with various types of strands. Different strand types and filament speeds are among the variables studied. The essential characteristics of SCC, including strength, break energy, sturdiness, and sorptivity, must be controlled. The hydrated design and security development between fiber and blend will be examined using an electron microscope to examine the tiny building of several mixes. 12mm cut glass fiber, carbon fiber, and basalt fiber will be used in the request, as they have been for quite some time. 0.0 percent, 0.1 percent, 0.15 percent, 0.2 percent, 0.25 percent, and 0.3 percent of strands are removed based on volume. The request is broken down into two parts. The first half involves creating a planned blend for SCC of a detailed assessment, such as M30. The second half involves adding filaments such as glass, basalt, and carbon strands to the SCC blends and evaluating and verifying their plastic and hardened properties. The experiment demonstrates a modest improvement in SCC aspects by adding strands of various types and altering the volume. Carbon fiber is the most improved in the more challenging state, followed by Basalt fiber and Glass fiber, and the least improved in the plastic state due to its high-water absorption. Glass fiber fared better in the plastic state. Basalt fiber fared better in the present study regarding cost, appropriate amount, and overall viability.


2022 ◽  
Vol 1 (3) ◽  
pp. 12-19
Author(s):  
Gopu Anil ◽  
◽  
Gomasa Ramesh ◽  

The invention of Self Compacting Concrete has been tremendous and continuing growth in the working area over the past decade, culminating in its widespread usage in today's reality. It outperforms regular cement in application and completion,cost, work reserve funds, and solidity. The addition of strands enhances its qualities, particularly those related to SCC's post- break behaviour. The goal is to investigate the strength properties of SCC when mixed with various types of strands. Different strand types and filament speeds are among the variables studied. The essential characteristics of SCC, including strength, break energy, sturdiness, and sorptivity, must be controlled. The hydrated design and security development between fiber and blend will be examined using an electron microscope to examine the tiny building of several mixes. 12mm cut glass fiber, carbon fiber, and basalt fiber will be used in the request, as they have been for quite some time. 0.0 percent, 0.1 percent, 0.15 percent, 0.2 percent, 0.25 percent, and 0.3 percent of strands are removed based on volume. The request is broken down into two parts. The first half involves creating a planned blend for SCC of a detailed assessment, such as M30. The second half involves adding filaments such as glass, basalt, and carbon strands to the SCC blends and evaluating and verifying their plastic and hardened properties. The experiment demonstrates a modest improvement in SCC aspects by adding strands of various types and altering the volume. Carbon fiber is the most improved in the more challenging state, followed by Basalt fiber and Glass fiber, and the least improved in the plastic state due to its high-water absorption. Glass fiber fared better in the plastic state. Basalt fiber fared better in the present study regarding cost, appropriate amount, and overall viability


2022 ◽  
Vol 318 ◽  
pp. 126048
Author(s):  
Keke Lou ◽  
Peng Xiao ◽  
Qin Tang ◽  
Yuhao Wu ◽  
Zhengguang Wu ◽  
...  
Keyword(s):  

2022 ◽  
Vol 320 ◽  
pp. 126323
Author(s):  
Zhen Fu ◽  
Yujie Tang ◽  
Feng Ma ◽  
Yujie Wang ◽  
Ke Shi ◽  
...  

Author(s):  
A. ARUL JEYA KUMAR ◽  
NIRANJAN S. RAJ ◽  
C. SAIPRASAD ◽  
AGHALAYAM R. SUDHANVA

This paper is focused on the analysis of the morphological and thermal properties of the biomedical composites, polylactic acid (PLA) and polycaprolactone (PCL) matrix, reinforced with basalt fibers (BFs) and using halloysite nanotubes (HNT) as filler material. Four different composites, viz. PPHB 1, PPHB 2, PPHB 3 and PPHB 4, are obtained by varying the weight fractions of these materials using twin-screw extrusion followed by injection molding. The morphological characterization is performed on these composites using scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. SEM reveals homogenous and strong bonding between the matrix, reinforcement and filler. The BF are well embedded in the matrix with a random orientation. No formation of voids and cracks is observed. The functional groups present and the types of vibration experienced by the chemical bonds were observed in the FTIR spectra. The composites are subjected to thermal testing such as differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The PPHB 2, which contains 80% PLA, 10% BF, 7% PCL and 3% HNT, has the highest degree of crystallinity, as revealed by DSC, and exhibits the most optimum thermal degradation characteristics as indicated by TGA.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 535
Author(s):  
Jianqin Wu ◽  
Jiannan Zhou ◽  
Ying Xu ◽  
Xinli Kong ◽  
Peng Wang ◽  
...  

This paper proposes a prefabricated basalt fiber reinforced polymer (BFRP) bars reinforcement of a concrete arch structure with superior performance in the field of protection engineering. To study the anti-blast performance of the shallow-buried BFRP bars concrete arch (BBCA), a multi-parameter comparative analysis was conducted employing the LS-DYNA numerical method, which was verified by the results of the field explosion experiments. By analyzing the pressure, displacement, acceleration of the arch, and the strain of the BFRP bars, the dynamic response of the arch was obtained. This study showed that BFRP bars could significantly optimize the dynamic responses of blast-loaded concrete arches. The damage of exploded BBCA was divided into five levels: no damage, slight damage, obvious damage, severe damage, and collapse. BFRP bars could effectively mitigate the degree of damage of shallow-buried underground protective arch structures under the explosive loads. According to the research results, it was feasible for BFRP bars to be used in the construction of shallow buried concrete protective arch structures, especially in the coastal environments.


2022 ◽  
pp. 107754632110514
Author(s):  
Sivakumar Solaiachari ◽  
Jayakumar Lakshmipathy

In this study, a new type of vibration isolator based on fluidic actuators and a composite slab was tested experimentally with an unbalanced disturbance. Quasi-zero stiffness vibration isolation techniques are advanced and provide effective isolation performance for non-nominal loads. The isolation performance of the proposed isolator was compared to that of a nonlinear vibration isolator equipped with fluidic actuators and a mechanical coil spring (NLVIFA). The NLVIFA system is better suited to non-nominal loads; however, the mechanical spring axial deflection leads to limited amplitude reduction in the system. To address this issue, a cross buckled slab was developed to replace a mechanical coil spring for absorbing vertical deflection by transverse bending, which is made of a specially developed composite material of Basalt fiber reinforced with epoxy resin and enhanced with graphene nano pellets. This current study was concerned with the theoretical analysis and experimental investigations of the proposed nonlinear vibration isolator with fluidic actuators and composite material (NLVIFA-CM), which performs under quasi-zero stiffness characteristics. Because of its reduced axial deflection, the theoretical and experimental results show that the NLVIFA-CM system outperforms the NLVIFA system and other linear type vibration isolators in terms of isolation performance. Furthermore, the proposed vibration isolator makes a significant contribution to low-frequency vibration.


Author(s):  
Mehran Khan ◽  
Mingli Cao ◽  
Hongmei Ai ◽  
Abasal Hussain

The calcium carbonate whisker (CW) and basalt fiber are gaining popularity due to its enhanced mechanical properties in composites. Also, the short and long fibers provide bridging role and resistance against cracking from micro- to macro-scale, respectively. The usage of long and short hybrid basalt fiber along with addition of CW in cement-based composites is still a research gap. In this work, experimental behavior of CW basalt hybrid fiber reinforced mortar is considered with various content and length (3 mm, 6 mm, 12 mm, and 20 mm) of hybrid basalt fibers. In addition to this, synergy performance index is determined to quantitatively evaluate the positive interaction of hybrid basalt fiber in cementitious materials. The strengthening effect of whiskers and basalt fibers are also studied using scanning electron microscopy. The CW with various basalt fiber contents having different length of hybrid basalt fiber is used. It was found that the four various length of hybrid basalt fiber together with CW in cement mortar exhibited enhanced compressive, flexural, and split tensile strength than that of pure mortar and single length basalt fiber reinforced cementitious mortar. The results of synergy performance index showed similar trend with the experimental results. The strengthening effect caused by step by step crack arresting mechanism was also observed in cementitious material.


Author(s):  
Mostafa Hassani Niaki ◽  
Morteza Ghorbanzadeh Ahangari ◽  
Abdolhossein Fereidoon

This paper studies the mechanical properties of polymer concrete (PC) with three types of resin systems. First, the effect of 0.5 wt% up to 3 wt% basalt fiber on the mechanical properties of a quaternary epoxy-based PC is investigated experimentally, and the best weight percentage of basalt fiber is obtained. The results show that adding basalt fiber to PC caused the greatest enhancement within 10% in compressive strength, 10% in flexural strength, 35% in the splitting tensile strength, and 315% in impact strength. In the next step, the effect of nanoclay particles on the mechanical properties of basalt fiber-reinforced PC (BFRPC) is analyzed experimentally. Nanoclays increase the compressive strength up to 7%, flexural strength up to 27%, and impact strength up to 260% but decrease the tensile strength of the PC. Field-emission scanning electron microscopy (FESEM) analysis is performed to study the fracture surface and morphology of various concrete specimens. In the last step, we consider the effect of two other different resin systems, rigid polyurethane and rigid polyurethane foam on the mechanical properties of reinforced polymer concrete. A comparison study presents that the epoxy PC has a higher specific strength than the polyurethane and ultra-lightweight polyurethane foam PC.


Sign in / Sign up

Export Citation Format

Share Document