scholarly journals Adaptive Performance Optimization for Large-Scale Traffic Control Systems

Author(s):  
Kouvelas, Anastasios
2009 ◽  
Vol 42 (15) ◽  
pp. 76-83
Author(s):  
A. Kouvelas ◽  
E. Kosmatopoulos ◽  
M. Papageorgiou ◽  
K. Aboudolas

2011 ◽  
Vol 12 (4) ◽  
pp. 1434-1445 ◽  
Author(s):  
Anastasios Kouvelas ◽  
Konstantinos Aboudolas ◽  
Elias B. Kosmatopoulos ◽  
Markos Papageorgiou

Author(s):  
Miroslaw Nawrocki ◽  
Krzysztof Kurowski ◽  
Radoslaw Gorzenski

Transforming basic multi-disciplinary research into applied research in the area of a new generation of networks, sensors, cyber-physical, and edge-cloud systems used for cyber space is a difficult task. However, moving even a step forward by providing advanced field and testing facilities for ground-air demonstrations for appearing Aviation 4.0 scenarios is a real challenge. In our opinion, such a rapid and dynamic process should be powered by many research and infrastructure projects. New development strategies are needed in the upcoming future to link emerging trends in information and communications technologies together with increased competitiveness and users expectations from fully autonomous drones, robots, cars, etc. This paper aims to share our early experiences in setting and providing distributed testbeds to cross different hardware, software, and cyber-physical components and pave the way for air-ground demonstrations of the new emerging IT paradigm – digital continuum. We also share our vision of implementing virtual and digital spaces at a large scale by the gradual transition towards higher levels of cyber-physical systems automation and autonomy. Finally, we promote dynamic, data-driven, service-oriented approaches and network-centric platforms for a new generation of air and ground control systems which will be validated in real conditions established thanks to our new airfield-based laboratories used in many ongoing and future R&D projects.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248764
Author(s):  
Angelo Furno ◽  
Nour-Eddin El Faouzi ◽  
Rajesh Sharma ◽  
Eugenio Zimeo

Betweenness Centrality (BC) has proven to be a fundamental metric in many domains to identify the components (nodes) of a system modelled as a graph that are mostly traversed by information flows thus being critical to the proper functioning of the system itself. In the transportation domain, the metric has been mainly adopted to discover topological bottlenecks of the physical infrastructure composed of roads or railways. The adoption of this metric to study the evolution of transportation networks that take into account also the dynamic conditions of traffic is in its infancy mainly due to the high computation time needed to compute BC in large dynamic graphs. This paper explores the adoption of dynamic BC, i.e., BC computed on dynamic large-scale graphs, modeling road networks and the related vehicular traffic, and proposes the adoption of a fast algorithm for ahead monitoring of transportation networks by computing approximated BC values under time constraints. The experimental analysis proves that, with a bounded and tolerable approximation, the algorithm computes BC on very large dynamically weighted graphs in a significantly shorter time if compared with exact computation. Moreover, since the proposed algorithm can be tuned for an ideal trade-off between performance and accuracy, our solution paves the way to quasi real-time monitoring of highly dynamic networks providing anticipated information about possible congested or vulnerable areas. Such knowledge can be exploited by travel assistance services or intelligent traffic control systems to perform informed re-routing and therefore enhance network resilience in smart cities.


2008 ◽  
Vol 64 (3) ◽  
pp. 295-310
Author(s):  
Kouji YAMAMOTO ◽  
Kazuya AOKI ◽  
Kiyoyuki KAITO ◽  
Kiyoshi KOBAYASHI

2020 ◽  
Vol 53 (2) ◽  
pp. 2634-2641
Author(s):  
Vinicius Lima ◽  
Mark Eisen ◽  
Konstatinos Gatsis ◽  
Alejandro Ribeiro

Sign in / Sign up

Export Citation Format

Share Document