dynamic graphs
Recently Published Documents


TOTAL DOCUMENTS

364
(FIVE YEARS 124)

H-INDEX

28
(FIVE YEARS 4)

2023 ◽  
Vol 55 (1) ◽  
pp. 1-37
Author(s):  
Claudio D. T. Barros ◽  
Matheus R. F. Mendonça ◽  
Alex B. Vieira ◽  
Artur Ziviani

Embedding static graphs in low-dimensional vector spaces plays a key role in network analytics and inference, supporting applications like node classification, link prediction, and graph visualization. However, many real-world networks present dynamic behavior, including topological evolution, feature evolution, and diffusion. Therefore, several methods for embedding dynamic graphs have been proposed to learn network representations over time, facing novel challenges, such as time-domain modeling, temporal features to be captured, and the temporal granularity to be embedded. In this survey, we overview dynamic graph embedding, discussing its fundamentals and the recent advances developed so far. We introduce the formal definition of dynamic graph embedding, focusing on the problem setting and introducing a novel taxonomy for dynamic graph embedding input and output. We further explore different dynamic behaviors that may be encompassed by embeddings, classifying by topological evolution, feature evolution, and processes on networks. Afterward, we describe existing techniques and propose a taxonomy for dynamic graph embedding techniques based on algorithmic approaches, from matrix and tensor factorization to deep learning, random walks, and temporal point processes. We also elucidate main applications, including dynamic link prediction, anomaly detection, and diffusion prediction, and we further state some promising research directions in the area.


Author(s):  
Ziyi Ma ◽  
Yuling Liu ◽  
Zhibang Yang ◽  
Jianye Yang ◽  
Kenli Li
Keyword(s):  

Author(s):  
Othon Michail ◽  
Paul G. Spirakis ◽  
Michail Theofilatos

We examine the problem of gathering [Formula: see text] agents (or multi-agent rendezvous) in dynamic graphs which may change in every round. We consider a variant of the [Formula: see text]-interval connectivity model [9] in which all instances (snapshots) are always connected spanning subgraphs of an underlying graph, not necessarily a clique. The agents are identical and not equipped with explicit communication capabilities, and are initially arbitrarily positioned on the graph. The problem is for the agents to gather at the same node, not fixed in advance. We first show that the problem becomes impossible to solve if the underlying graph has a cycle. In light of this, we study a relaxed version of this problem, called weak gathering, where the agents are allowed to gather either at the same node, or at two adjacent nodes. Our goal is to characterize the class of 1-interval connected graphs and initial configurations in which the problem is solvable, both with and without homebases. On the negative side we show that when the underlying graph contains a spanning bicyclic subgraph and satisfies an additional connectivity property, weak gathering is unsolvable, thus we concentrate mainly on unicyclic graphs. As we show, in most instances of initial agent configurations, the agents must meet on the cycle. This adds an additional difficulty to the problem, as they need to explore the graph and recognize the nodes that form the cycle. We provide a deterministic algorithm for the solvable cases of this problem that runs in [Formula: see text] number of rounds.


2021 ◽  
Vol 9 (10) ◽  
pp. 315-319
Author(s):  
Ahmed Mouhamadou Wade ◽  

In this paper, we study the necessary and sufficient time to explore with return constantly connected dynamic networks modelled by a dynamic graphs. Exploration with return consists, for an agent operating in a dynamic graph, of visiting all the vertices of the graph and returning to the starting vertex. We show that for constantly connected dynamic graphs based on a ring of sizen,3n-4 time units are necessary and sufficient to explore it. Assuming that the agent knows the dynamics of the graph.


2021 ◽  
pp. 147387162110560
Author(s):  
Evan Ezell ◽  
Seung-Hwan Lim ◽  
David Anderson ◽  
Robert Stewart

We present Community Fabric, a novel visualization technique for simultaneously visualizing communities and structure within dynamic networks. In dynamic networks, the structure of the network is continuously evolving throughout time and these underlying topological shifts tend to lead to communal changes. Community Fabric helps the viewer more easily interpret and understand the interplay of structural change and community evolution in dynamic graphs. To achieve this, we take a new approach, hybridizing two popular network and community visualizations. Community Fabric combines the likes of the Biofabric static network visualization method with traditional community alluvial flow diagrams to visualize communities in a dynamic network while also displaying the underlying network structure. Our approach improves upon existing state-of-the-art techniques in several key areas. We describe the methodologies of Community Fabric, implement the visualization using modern web-based tools, and apply our approach to three example data sets.


2021 ◽  
Author(s):  
Haoyang Li ◽  
Lei Chen
Keyword(s):  

2021 ◽  
Author(s):  
Lei Cai ◽  
Zhengzhang Chen ◽  
Chen Luo ◽  
Jiaping Gui ◽  
Jingchao Ni ◽  
...  

2021 ◽  
Author(s):  
Sheng Tian ◽  
Ruofan Wu ◽  
Leilei Shi ◽  
Liang Zhu ◽  
Tao Xiong

Sign in / Sign up

Export Citation Format

Share Document