Event-triggered PI control subject to actuator saturation

2012 ◽  
Vol 45 (3) ◽  
pp. 430-435 ◽  
Author(s):  
D. Lehmann ◽  
K.H. Johansson
Author(s):  
Lingcong Nie ◽  
Xindi Xu ◽  
Yan Li ◽  
Weiyu Jiang ◽  
Yiwen Qi ◽  
...  

This paper investigates adaptive event-triggered [Formula: see text] control for network-based master-slave switched systems subject to actuator saturation and data injection attacks. It is an important and unrecognised issue that the switching signal is affected from both event-triggering scheme and network attacks. An adaptive event-triggering scheme is proposed that can adjust the triggering frequency through a variable threshold based on system performance. Furthermore, considering the impacts of transmission delays and actuator saturation, an event-triggered time-delay error switched system is developed. Subsequently, by utilizing piecewise Lyapunov functional technique, sufficient conditions are derived to render the time-delay error switched system to have an [Formula: see text] performance level. In particular, the coupling between switching instants and data updating instants is analyzed during the system performance analysis. Moreover, sufficient conditions for the desired state-feedback controller gains and event-triggering parameter are presented. Finally, a numerical example is given to verify the effectiveness of the proposed method.


2021 ◽  
Author(s):  
Junfeng Zhang ◽  
Suhuan Zhang ◽  
Peng Lin

Abstract This paper investigates the event-triggered model predictive control of positive systems with actuator saturation. Interval and polytopic uncertainties are imposed on the systems, respectively. First, a new model with actuator saturation obeying Bernoulli distribution is established, which is more general and powerful for describing the saturation phenomenon than the saturation in a certain way. Then, a linear event-triggering condition is constructed based on the state and error signal. An interval estimate approach is presented to reach the positivity and stability of the systems. The saturation part in the controller is technically transformed into a non-saturation part. Thus, a linear programming approach is proposed to compute the event-triggered controller gain and the corresponding domain of attraction gain. A predictive algorithm is introduced for the computation of the event-triggered controller parameters. Finally, an example is provided to illustrate the validity of the design.


Sign in / Sign up

Export Citation Format

Share Document