scholarly journals Quantum graphs with summable matrix potentials

2019 ◽  
Vol 488 (1) ◽  
pp. 5-10
Author(s):  
Ya. I. Granovskyi ◽  
M. M. Malamud ◽  
H. Neidhardt

Let G be a metric, finite, noncompact, and connected graph with finitely many edges and vertices. Assume also that the length at least of one of the edges is infinite. The main object of the paper is Hamiltonian Hα associated in L2(G; Cm) with matrix Sturm-Liouville’s expression and boundary delta-type conditions at each vertex. Assuming that the potential matrix is summable and applying technique of boundary triplets and the corresponding Weyl functions we show that the singular continuous spectrum of the Hamiltonian Hα as well as any other self-adjoint realization of the Sturm-Liouville expression is empty. We also indicate conditions on the graph ensuring the positive part of the Hamiltonian Hα to be purely absolutely continuous. Under an additional condition on the potential matrix the Bargmann type estimate for the number of the negative eigenvalues of the operator Hα is obtained. Also we find a formula for the scattering matrix of the pair {Hα, HD} where HD is the operator of the Dirichlet problem on the graph.

1998 ◽  
Vol 41 (1) ◽  
pp. 23-27
Author(s):  
Dominic P. Clemence

AbstractThe Gilbert-Pearson characterization of the spectrum is established for a generalized Sturm-Liouville equation with two singular endpoints. It is also shown that strong absolute continuity for the one singular endpoint problem guarantees absolute continuity for the two singular endpoint problem. As a consequence, we obtain the result that strong nonsubordinacy, at one singular endpoint, of a particular solution guarantees the nonexistence of subordinate solutions at both singular endpoints.


2014 ◽  
Vol 58 (1) ◽  
pp. 125-147 ◽  
Author(s):  
N. A. Chernyavskaya ◽  
L. A. Shuster

AbstractConsider the equationwhereƒ∈Lp(ℝ),p∈ (1, ∞) andBy a solution of (*), we mean any functionyabsolutely continuous together with (ry′) and satisfying (*) almost everywhere on ℝ. In addition, we assume that (*) is correctly solvable in the spaceLp(ℝ), i.e.(1) for any function, there exists a unique solutiony∈Lp(ℝ) of (*);(2) there exists an absolute constantc1(p) > 0 such that the solutiony∈Lp(ℝ) of (*) satisfies the inequalityWe study the following problem on the strengthening estimate (**). Let a non-negative functionbe given. We have to find minimal additional restrictions forθunder which the following inequality holds:Here,yis a solution of (*) from the classLp(ℝ), andc2(p) is an absolute positive constant.


Sign in / Sign up

Export Citation Format

Share Document