scholarly journals Changes in area and geodetic mass balance of small glaciers, Polar Urals, Russia, 1950-2008

2012 ◽  
Vol 58 (211) ◽  
pp. 953-964 ◽  
Author(s):  
Maria Shahgedanova ◽  
Gennady Nosenko ◽  
Irina Bushueva ◽  
Mikhail Ivanov

AbstractChanges in area of 30 small glaciers (mostly <1 km2) in the northern Polar Urals (67.568.25° N) between 1953 and 2000 were assessed using historic aerial photography from 1953 and 1960, ASTER and panchromatic Landsat ETM+ imagery from 2000, and data from 1981 and 2008 terrestrial surveys. Changes in volume and geodetic mass balance of IGAN and Obruchev glaciers were calculated using data from terrestrial surveys in 1963 and 2008. In total, glacier area declined by 22.3 ± 3.9% in the 1953/60-2000 period. The areas of individual glaciers decreased by 4-46%. Surfaces of Obruchev and IGAN glaciers lowered by 22.5 ± 1.7 m and 14.9 ± 2.1 m. Over 45 years, geodetic mass balances of Obruchev and IGAN glaciers were -20.66 ± 2.91 and -13.54 ± 2.57 mw.e. respectively. Glacier shrinkage in the Polar Urals is related to a summer warming of 1°C between 1953-81 and 1981-2008 and its rates are consistent with other regions of northern Asia but are higher than in Scandinavia. While glacier shrinkage intensified in the 1981-2000 period relative to 1953-81, increasing winter precipitation and shading effects slowed glacier wastage in 2000-08.

2012 ◽  
Vol 6 (6) ◽  
pp. 1369-1381 ◽  
Author(s):  
T. D. James ◽  
T. Murray ◽  
N. E. Barrand ◽  
H. J. Sykes ◽  
A. J. Fox ◽  
...  

Abstract. Changes in the volume and extent of land ice of the Svalbard archipelago have been the subject of considerable research since their sensitivity to changes in climate was first noted. However, the measurement of these changes is often necessarily based on point or profile measurements which may not be representative if extrapolated to a whole catchment or region. Combining high-resolution elevation data from contemporary laser-altimetry surveys and archived aerial photography makes it possible to measure historical changes across a glacier's surface without the need for extrapolation. Here we present a high spatial resolution time-series for six Arctic glaciers in the Svalbard archipelago spanning 1961 to 2005. We find high variability in thinning rates between sites with prevalent elevation changes at all sites averaging −0.59 ± 0.04 m a−1 between 1961–2005. Prior to 1990, ice surface elevation was changing at an average rate of −0.52 ± 0.09 m a−1 which decreased to −0.76 ± 0.10 m a−1 after 1990. Setting the elevation changes against the glaciers' altitude distribution reveals that significant increases in thinning rates are occurring most notably in the glaciers' upper reaches. We find that these changes are coincident with a decrease in winter precipitation at the Longyearbyen meteorological station and could reflect a decrease in albedo or dynamic response to lower accumulation. Further work is required to understand fully the causes of this increase in thinning rates in the glaciers' upper reaches. If on-going and occurring elsewhere in the archipelago, these changes will have a significant effect on the region's future mass balance. Our results highlight the importance of understanding the climatological context of geodetic mass balance measurements and demonstrate the difficulty of using index glaciers to represent regional changes in areas of strong climatological gradients.


1969 ◽  
Vol 8 (52) ◽  
pp. 9-22 ◽  
Author(s):  
M. G. Grosval’d ◽  
V. M. Kotlyakov

There are four major glacier regions in the U.S.S.R.: the Atlantic-Arctic, Atlantic-Eurasian, East Siberian and Pacific-Asian, which can be divided into 19 separate glacier areas. The total area of the glaciers in the country amounts to 81 900 km2, and the volume of water stored in them to 13 750 km3.The main characteristic features of glacier regime, such as the elevation of the equilibrium line, the value of the total accumulation at the equilibrium line, the vertical gradients of net balance, the “glacier ratios”. etc., are estimated for the majority of the glacier areas. The data on mass balance of the glaciers in the Polar Urals and Tien Shan which were obtained by direct measurement during the last decade are tabulated and compared. It has been found that the glacier balance changes in the two areas are nonsynchronous.A comparison of the variations in mass balance of the Lednik IGAN in the Polar Urals, and the Grosser Aletschgletscher in the Swiss Alps, over a period of several decades suggests a cyclic trend of the variations in both regions (with a wave-length of about 22 years), and the direct opposition in their phase. The analogy of 22-year cycles of the balance variations with the cyclic fluctuations of the same wave-length in solar activity seems to be quite evident, whereas the atmospheric circulation appears to be one of the main intermediate variables in the chain sun-glaciers responsible for the out-of-phase relationship in glacier variations of certain areas.In conclusion, some data on the present changes in glacier regime are given, as well as general information on glaciological studies carried on in the U.S.S.R. within the framework of the I.H.D. programmes. The latter include the compilation of the Soviet Union inventory of perennial snow and ice masses, the continuous measurement of glacier variations, and the research on combined heat, mass and water balances at selected mountain glacier basins.


1969 ◽  
Vol 8 (52) ◽  
pp. 9-22 ◽  
Author(s):  
M. G. Grosval’d ◽  
V. M. Kotlyakov

There are four major glacier regions in the U.S.S.R.: the Atlantic-Arctic, Atlantic-Eurasian, East Siberian and Pacific-Asian, which can be divided into 19 separate glacier areas. The total area of the glaciers in the country amounts to 81 900 km2, and the volume of water stored in them to 13 750 km3. The main characteristic features of glacier regime, such as the elevation of the equilibrium line, the value of the total accumulation at the equilibrium line, the vertical gradients of net balance, the “glacier ratios”. etc., are estimated for the majority of the glacier areas. The data on mass balance of the glaciers in the Polar Urals and Tien Shan which were obtained by direct measurement during the last decade are tabulated and compared. It has been found that the glacier balance changes in the two areas are nonsynchronous. A comparison of the variations in mass balance of the Lednik IGAN in the Polar Urals, and the Grosser Aletschgletscher in the Swiss Alps, over a period of several decades suggests a cyclic trend of the variations in both regions (with a wave-length of about 22 years), and the direct opposition in their phase. The analogy of 22-year cycles of the balance variations with the cyclic fluctuations of the same wave-length in solar activity seems to be quite evident, whereas the atmospheric circulation appears to be one of the main intermediate variables in the chain sun-glaciers responsible for the out-of-phase relationship in glacier variations of certain areas. In conclusion, some data on the present changes in glacier regime are given, as well as general information on glaciological studies carried on in the U.S.S.R. within the framework of the I.H.D. programmes. The latter include the compilation of the Soviet Union inventory of perennial snow and ice masses, the continuous measurement of glacier variations, and the research on combined heat, mass and water balances at selected mountain glacier basins.


2013 ◽  
Vol 47 ◽  
pp. 127-134
Author(s):  
O. V. Morozova ◽  
E. S. Popov

The paper describes two records of species of the genus Pseudobaeospora Singer emend. Bas. P. pillodii (Quel.) Wasser, collected in 2009 in the Teberda State Nature Reserve, was found before in Altai [reported as P. oligophylla (Singer) Singer, the type species of the genus], as well as in the Polar Urals. P. pyrifera is new to Russia. The descriptions are illustrated by line drawings and colour photographs.


2019 ◽  
Vol 13 (9) ◽  
pp. 2361-2383 ◽  
Author(s):  
Chunhai Xu ◽  
Zhongqin Li ◽  
Huilin Li ◽  
Feiteng Wang ◽  
Ping Zhou

Abstract. The direct glaciological method provides in situ observations of annual or seasonal surface mass balance, but can only be implemented through a succession of intensive in situ measurements of field networks of stakes and snow pits. This has contributed to glacier surface mass-balance measurements being sparse and often discontinuous in the Tien Shan. Nevertheless, long-term glacier mass-balance measurements are the basis for understanding climate–glacier interactions and projecting future water availability for glacierized catchments in the Tien Shan. Riegl VZ®-6000 long-range terrestrial laser scanner (TLS), typically using class 3B laser beams, is exceptionally well suited for repeated glacier mapping, and thus determination of annual and seasonal geodetic mass balance. This paper introduces the applied TLS for monitoring summer and annual surface elevation and geodetic mass changes of Urumqi Glacier No. 1 as well as delineating accurate glacier boundaries for 2 consecutive mass-balance years (2015–2017), and discusses the potential of such technology in glaciological applications. Three-dimensional changes of ice and firn–snow bodies and the corresponding densities were considered for the volume-to-mass conversion. The glacier showed pronounced thinning and mass loss for the four investigated periods; glacier-wide geodetic mass balance in the mass-balance year 2015–2016 was slightly more negative than in 2016–2017. Statistical comparison shows that agreement between the glaciological and geodetic mass balances can be considered satisfactory, indicating that the TLS system yields accurate results and has the potential to monitor remote and inaccessible glacier areas where no glaciological measurements are available as the vertical velocity component of the glacier is negligible. For wide applications of the TLS in glaciology, we should use stable scan positions and in-situ-measured densities of snow–firn to establish volume-to-mass conversion.


2008 ◽  
Vol 14 (7) ◽  
pp. 1581-1591 ◽  
Author(s):  
NADEZHDA DEVI ◽  
FRANK HAGEDORN ◽  
PAVEL MOISEEV ◽  
HARALD BUGMANN ◽  
STEPAN SHIYATOV ◽  
...  

Boreas ◽  
2018 ◽  
Vol 48 (2) ◽  
pp. 317-329 ◽  
Author(s):  
Youri Lammers ◽  
Charlotte L. Clarke ◽  
Christer Erséus ◽  
Antony G. Brown ◽  
Mary E. Edwards ◽  
...  

2018 ◽  
Vol 64 (248) ◽  
pp. 917-931 ◽  
Author(s):  
RUBÉN BASANTES-SERRANO ◽  
ANTOINE RABATEL ◽  
CHRISTIAN VINCENT ◽  
PASCAL SIRGUEY

ABSTRACTUnderstanding the effects of climate on glaciers requires precise estimates of ice volume change over several decades. This is achieved by the geodetic mass balance computed by two means: (1) the digital elevation model (DEM) comparison (SeqDEM) allows measurements over the entire glacier, however the low contrast over glacierized areas is an issue for the DEM generation through the photogrammetric techniques and (2) the profiling method (SePM) is a faster alternative but fails to capture the spatial variability of elevation changes. We present a new framework (SSD) that relies upon the spatial variability of the elevation change to densify a sampling network to optimize the surface-elevation change quantification. Our method was tested in two small glaciers over different periods. We conclude that the SePM overestimates the elevation change by ~20% with a mean difference of ~1.00 m (root mean square error (RMSE) = ~3.00 m) compared with results from the SeqDEM method. A variogram analysis of the elevation changes showed a mean difference of <0.10 m (RMSE = ~2.40 m) with SSD approach. A final assessment on the largest glacier in the French Alps confirms the high potential of our method to compute the geodetic mass balance, without going through the generation of a full-density DEM, but with a similar accuracy than the SeqDEM approach.


2010 ◽  
Vol 4 (3) ◽  
pp. 1151-1194
Author(s):  
A. Fischer

Abstract. Glacier mass balance is measured with the direct or the geodetic method. In this study, the geodetic mass balances of six Austrian glaciers in 19 periods between 1953 and 2006 are compared to the direct mass balances in the same periods. The mean annual geodetic mass balance for all periods is −0.5 m w.e./year. The mean difference between the geodetic and the direct data is −0.7 m w.e., the minimum −7.3 m w.e. and the maximum 5.6 m w.e. The accuracy of geodetic mass balance resulting from the accuracy of the DEMs ranges from 2 m w.e. for photogrammetric data to 0.002 m w.e. for LIDAR data. Basal melt, seasonal snow cover and density changes of the surface layer contribute up to 0.7 m w.e. for the period of 10 years to the difference to the direct method. The characteristics of published data of Griesgletscher, Gulkana Glacier, Lemon Creek glacier, South Cascade, Storbreen, Storglaciären, and Zongo Glacier is similar to these Austrian glaciers. For 26 analyzed periods with an average length of 18 years the mean difference between the geodetic and the direct data is −0.4 m w.e., the minimum −7.2 m w.e. and the maximum 3.6 m w.e. Longer periods between the acquisition of the DEMs do not necessarily result in a higher accuracy of the geodetic mass balance. Specific glaciers show specific trends of the difference between the direct and the geodetic data according to their type and state. In conclusion, geodetic and direct mass balance data are complementary, but differ systematically.


Sign in / Sign up

Export Citation Format

Share Document