glacier mass balance
Recently Published Documents


TOTAL DOCUMENTS

665
(FIVE YEARS 188)

H-INDEX

54
(FIVE YEARS 8)

2022 ◽  
Vol 14 (2) ◽  
pp. 272
Author(s):  
Chunhai Xu ◽  
Zhongqin Li ◽  
Feiteng Wang ◽  
Jianxin Mu ◽  
Xin Zhang

The eastern Tien Shan hosts substantial mid-latitude glaciers, but in situ glacier mass balance records are extremely sparse. Haxilegen Glacier No. 51 (eastern Tien Shan, China) is one of the very few well-measured glaciers, and comprehensive glaciological measurements were implemented from 1999 to 2011 and re-established in 2017. Mass balance of Haxilegen Glacier No. 51 (1999–2015) has recently been reported, but the mass balance record has not extended to the period before 1999. Here, we used a 1:50,000-scale topographic map and long-range terrestrial laser scanning (TLS) data to calculate the area, volume, and mass changes for Haxilegen Glacier No. 51 from 1964 to 2018. Haxilegen Glacier No. 51 lost 0.34 km2 (at a rate of 0.006 km2 a−1 or 0.42% a−1) of its area during the period 1964–2018. The glacier experienced clearly negative surface elevation changes and geodetic mass balance. Thinning occurred almost across the entire glacier surface, with a mean value of −0.43 ± 0.12 m a−1. The calculated average geodetic mass balance was −0.36 ± 0.12 m w.e. a−1. Without considering the error bounds of mass balance estimates, glacier mass loss over the past 50 years was in line with the observed and modeled mass balance (−0.37 ± 0.22 m w.e. a−1) that was published for short time intervals since 1999 but was slightly less negative than glacier mass loss in the entire eastern Tien Shan. Our results indicate that Riegl VZ®-6000 TLS can be widely used for mass balance measurements of unmonitored individual glaciers.


2022 ◽  
Author(s):  
Jonathan Oberreuter ◽  
Edwin Badillo-Rivera ◽  
Edwin Loarte ◽  
Katy Medina ◽  
Alejo Cochachin ◽  
...  

Abstract. We present a representative set of data of interpreted ice thickness and ice surface elevation of the ablation area of the Artesonraju glacier between 2012 and 2020. The ice thickness was obtained by means of Ground Penetrating Radar (GPR), while the surface elevation was by means of automated total stations and mass balance stakes. The results from GPR data show a maximum depth of 235 ± 18 m and a decreasing mean depth ranging from 134 ± 18 m in 2013 to 110 ± 18 m in 2020. Additionally, we estimate a mean ice thickness change rate of −4.2 ± 3.2 m yr−1 between 2014 and 2020 with GPR data alone, which is in agreement with the elevation change in the same period. The latter was estimated with the more accurate surface elevation data, yielding a change rate of −3.2 ± 0.2 m yr−1, and hence, confirming a negative glacier mass balance. The data set can be valuable for further analysis when combined with other data types, and as input for glacier dynamics modeling, ice volume estimations, and GLOF (glacial lake outburst flood) risk assessment. The complete dataset is available at https://doi.org/10.5281/zenodo.5571081 (Oberreuter et al, 2021).


2021 ◽  
Vol 13 (24) ◽  
pp. 5122
Author(s):  
Massimo Menenti ◽  
Xin Li ◽  
Li Jia ◽  
Kun Yang ◽  
Francesca Pellicciotti ◽  
...  

This project explored the integrated use of satellite, ground observations and hydrological distributed models to support water resources assessment and monitoring in High Mountain Asia (HMA). Hydrological data products were generated taking advantage of the synergies of European and Chinese data assets and space-borne observation systems. Energy-budget-based glacier mass balance and hydrological models driven by satellite observations were developed. These models can be applied to describe glacier-melt contribution to river flow. Satellite hydrological data products were used for forcing, calibration, validation and data assimilation in distributed river basin models. A pilot study was carried out on the Red River basin. Multiple hydrological data products were generated using the data collected by Chinese satellites. A new Evapo-Transpiration (ET) dataset from 2000 to 2018 was generated, including plant transpiration, soil evaporation, rainfall interception loss, snow/ice sublimation and open water evaporation. Higher resolution data were used to characterize glaciers and their response to environmental forcing. These studies focused on the Parlung Zangbo Basin, where glacier facies were mapped with GaoFeng (GF), Sentinal-2/Multi-Spectral Imager (S2/MSI) and Landsat8/Operational Land Imager (L8/OLI) data. The geodetic mass balance was estimated between 2000 and 2017 with Zi-Yuan (ZY)-3 Stereo Images and the SRTM DEM. Surface velocity was studied with Landsat5/Thematic Mapper (L5/TM), L8/OLI and S2/MSI data over the period 2013–2019. An updated method was developed to improve the retrieval of glacier albedo by correcting glacier reflectance for anisotropy, and a new dataset on glacier albedo was generated for the period 2001–2020. A detailed glacier energy and mass balance model was developed with the support of field experiments at the Parlung No. 4 Glacier and the 24 K Glacier, both in the Tibetan Plateau. Besides meteorological measurements, the field experiments included glaciological and hydrological measurements. The energy balance model was formulated in terms of enthalpy for easier treatment of water phase transitions. The model was applied to assess the spatial variability in glacier melt. In the Parlung No. 4 Glacier, the accumulated glacier melt was between 1.5 and 2.5 m w.e. in the accumulation zone and between 4.5 and 6.0 m w.e. in the ablation zone, reaching 6.5 m w.e. at the terminus. The seasonality in the glacier mass balance was observed by combining intensive field campaigns with continuous automatic observations. The linkage of the glacier and snowpack mass balance with water resources in a river basin was analyzed in the Chiese (Italy) and Heihe (China) basins by developing and applying integrated hydrological models using satellite retrievals in multiple ways. The model FEST-WEB was calibrated using retrievals of Land Surface Temperature (LST) to map soil hydrological properties. A watershed model was developed by coupling ecohydrological and socioeconomic systems. Integrated modeling is supported by an updated and parallelized data assimilation system. The latter exploits retrievals of brightness temperature (Advanced Microwave Scanning Radiometer, AMSR), LST (Moderate Resolution Imaging Spectroradiometer, MODIS), precipitation (Tropical Rainfall Measuring Mission (TRMM) and FengYun (FY)-2D) and in-situ measurements. In the case study on the Red River Basin, a new algorithm has been applied to disaggregate the SMOS (Soil Moisture and Ocean Salinity) soil moisture retrievals by making use of the correlation between evaporative fraction and soil moisture.


2021 ◽  
Author(s):  
Jayson Eppler ◽  
Bernhard T. Rabus ◽  
Peter Morse

Abstract. Area-based measurements of snow water equivalent (SWE) are important for understanding earth system processes such as glacier mass balance, winter hydrological storage in drainage basins and ground thermal regimes. Remote sensing techniques are ideally suited for wide-scale area-based mapping with the most commonly used technique to measure SWE being passive-microwave, which is limited to coarse spatial resolutions of 25 km or greater, and to areas without significant topographic variation. Passive-microwave also has a negative bias for large SWE. Repeat-pass synthetic aperture radar interferometry (InSAR) as an alternate technique allows measurement of SWE change at much higher spatial resolution. However, it has not been widely adopted because: (1) the phase unwrapping problem has not been robustly addressed, especially for interferograms with poor coherence and; (2) SWE change maps scaled directly from repeat-pass interferograms are not an absolute measurement but contain unknown offsets for each contiguous coherent area. We develop and test a novel method for repeat-pass InSAR based dry-snow SWE estimation that exploits the sensitivity of the dry-snow refraction-induced InSAR phase to topographic variations. The method robustly estimates absolute SWE change at spatial resolutions of < 1 km, without the need for phase unwrapping. We derive a quantitative signal model for this new SWE change estimator and identify the relevant sources of bias. The method is demonstrated using both simulated SWE distributions and a 9-year RADARSAT-2 spotlight-mode dataset near Inuvik, NWT, Canada. SWE results are compared to in situ snow survey measurements and estimates from ERA5 reanalysis. Our method performs well in high-relief areas and in areas with high SWE (> 150 mm), thus providing complementary coverage to other passive- and active-microwave based SWE estimation methods. Further, our method has the advantage of requiring only a single wavelength band and thus can utilize existing spaceborne synthetic aperture radar systems. In application, a first order analysis of SWE trends within three drainage basins suggests that differences between basin-level accumulations are a function of major landcover types, and that re-vegetation following a forest-tundra fire that occurred over 50 years ago continues to affect the spatial distribution of SWE accumulation in the study area.


2021 ◽  
Author(s):  
Michael McCarthy ◽  
Evan Miles ◽  
Marin Kneib ◽  
Pascal Buri ◽  
Stefan Fugger ◽  
...  

Supraglacial debris strongly modulates glacier melt rates and can be decisive for ice dynamics and mountain hydrology. It is ubiquitous in High-Mountain Asia (HMA), yet because its thickness and supply rate from local topography are poorly known, our ability to forecast regional glacier change and streamflow is limited. Here we resolved the spatial distribution of supraglacial debris thickness (SDT) for 4401 glaciers in HMA for 2000-2016, via an inverse approach using a new dataset of glacier mass balance. We then determined debris-supply rate (DSR) to 3843 of those glaciers using a debris mass-balance model. Our results reveal high spatial variability in both SDT and DSR, with supraglacial debris most concentrated around Everest, and DSR highest in the Pamir-Alai. We demonstrate that DSR and, by extension, SDT increase with the temperature and slope of debris-supply slopes regionally and that SDT increases as ice flow decreases locally. Our centennial-scale estimates of DSR are an order of magnitude lower than millennial-scale estimates of headwall-erosion rate from 10Be cosmogenic nuclides, indicating that debris supply to the region's glaciers is highly episodic. We anticipate that our datasets will enable improved representation of the complex response of HMA's glaciers to climatic warming in future modelling efforts.


2021 ◽  
Author(s):  
◽  
Alice Doughty

<p>Glacier length fluctuations reflect changes in climate, most notably temperature and precipitation. By this reasoning, moraines, which represent former glacier extent, can be used to estimate past climate. However, estimating palaeoclimate from moraines is not a straight-forward process and involves several assumptions. For example, recent studies have suggested that interannual stochastic variability in temperature in a steady-state climate can cause a glacier to experience kilometre-scale fluctuations. Such studies cast doubt on the usefulness of moraines as climate proxy indicators. Detailed glacial geomorphological maps and moraine chronologies have improved our understanding of the spatial and temporal extent of past glacial events in New Zealand. Palaeoclimate estimates associated with these moraines have thus-far come from simple methods, such as the accumulation area ratio, with unquantifiable uncertainties. I used a numerical modelling approach to approximate the present-day glacier mass balance pattern, which includes the effects of snow avalanching on glacier mass balance. I then used the models to reconstruct palaeoclimate for Lateglacial and Holocene glacial events in New Zealand, and to better understand moraine-glacier-climate relationships. The climate reconstructions come from simulating past glacier expansions to specific terminal moraines, but I also simulated glacier fluctuations in response to a previously derived temperature reconstruction, and to interannual stochastic variability in temperature. The purpose behind each simulation was to identify the drivers of significant glacier fluctuations. The modelling results support the hypothesis that New Zealand moraine records reflect past climate, especially changes in temperature. Lateglacial climate was reconstructed to be 2-3 C lower than the present day. This temperature range agrees well with previous estimates from moraines and other climate proxy records in New Zealand. Modelled temperature estimates for the Holocene moraines are slightly colder than those derived from simpler methods, due to a non-linear relationship found between snowline lowering and glacier length. This relationship results from the specific valley shape and glacier geometry, and is likely to occur in other, similarly-shaped glacier valleys. The simulations forced by interannual stochastic variability in temperature do not show significant (>300 m) fluctuations in the glacier terminus. Such fluctuations can not explain the Holocene moraine sequence that I examined, which extends >2 km beyond the present-day glacier terminus. Stochastic temperature change could, however, in part, cause fluctuations in glacier extent during an overall glacier recession. Modelling shows that it is also unlikely that glaciers advanced to Holocene and Lateglacial moraine positions as a result of precipitation changes alone. For these reasons, temperature changes are a necessary part of explaining past glacier extents, especially during the Lateglacial, and the moraines examined here likely reflect changes in mean climate in New Zealand. The glacier modelling studies indicate that simpler methods, such as the accumulation area ratio, can be used to appropriately reconstruct past climate from glacial evidence, as long as the glacier catchment has a straight forward geometry, shallow bed slope and no tributary glaciers. Non-linear relationships between climate change and glacier length develop when valley shape is more complex, and glaciers within these systems are probably better simulated using a modelling approach. Using a numerical modelling approach, it is also possible to gain a greater understanding of glacier response time, length sensitivities, and estimates of ice extent in valleys within the model domain where geomorphic evidence is not available. In this manner, numerical models can be used as a tool for understanding past climate and glacier sensitivity, thus improving the confidence in the palaeoclimate interpretations.</p>


2021 ◽  
Author(s):  
◽  
Alice Doughty

<p>Glacier length fluctuations reflect changes in climate, most notably temperature and precipitation. By this reasoning, moraines, which represent former glacier extent, can be used to estimate past climate. However, estimating palaeoclimate from moraines is not a straight-forward process and involves several assumptions. For example, recent studies have suggested that interannual stochastic variability in temperature in a steady-state climate can cause a glacier to experience kilometre-scale fluctuations. Such studies cast doubt on the usefulness of moraines as climate proxy indicators. Detailed glacial geomorphological maps and moraine chronologies have improved our understanding of the spatial and temporal extent of past glacial events in New Zealand. Palaeoclimate estimates associated with these moraines have thus-far come from simple methods, such as the accumulation area ratio, with unquantifiable uncertainties. I used a numerical modelling approach to approximate the present-day glacier mass balance pattern, which includes the effects of snow avalanching on glacier mass balance. I then used the models to reconstruct palaeoclimate for Lateglacial and Holocene glacial events in New Zealand, and to better understand moraine-glacier-climate relationships. The climate reconstructions come from simulating past glacier expansions to specific terminal moraines, but I also simulated glacier fluctuations in response to a previously derived temperature reconstruction, and to interannual stochastic variability in temperature. The purpose behind each simulation was to identify the drivers of significant glacier fluctuations. The modelling results support the hypothesis that New Zealand moraine records reflect past climate, especially changes in temperature. Lateglacial climate was reconstructed to be 2-3 C lower than the present day. This temperature range agrees well with previous estimates from moraines and other climate proxy records in New Zealand. Modelled temperature estimates for the Holocene moraines are slightly colder than those derived from simpler methods, due to a non-linear relationship found between snowline lowering and glacier length. This relationship results from the specific valley shape and glacier geometry, and is likely to occur in other, similarly-shaped glacier valleys. The simulations forced by interannual stochastic variability in temperature do not show significant (>300 m) fluctuations in the glacier terminus. Such fluctuations can not explain the Holocene moraine sequence that I examined, which extends >2 km beyond the present-day glacier terminus. Stochastic temperature change could, however, in part, cause fluctuations in glacier extent during an overall glacier recession. Modelling shows that it is also unlikely that glaciers advanced to Holocene and Lateglacial moraine positions as a result of precipitation changes alone. For these reasons, temperature changes are a necessary part of explaining past glacier extents, especially during the Lateglacial, and the moraines examined here likely reflect changes in mean climate in New Zealand. The glacier modelling studies indicate that simpler methods, such as the accumulation area ratio, can be used to appropriately reconstruct past climate from glacial evidence, as long as the glacier catchment has a straight forward geometry, shallow bed slope and no tributary glaciers. Non-linear relationships between climate change and glacier length develop when valley shape is more complex, and glaciers within these systems are probably better simulated using a modelling approach. Using a numerical modelling approach, it is also possible to gain a greater understanding of glacier response time, length sensitivities, and estimates of ice extent in valleys within the model domain where geomorphic evidence is not available. In this manner, numerical models can be used as a tool for understanding past climate and glacier sensitivity, thus improving the confidence in the palaeoclimate interpretations.</p>


2021 ◽  
Vol 3 ◽  
Author(s):  
Shawn J. Marshall

Glaciers and ice sheets are experiencing dramatic changes in response to recent climate change. This is true in both mountain and polar regions, where the extreme sensitivity of the cryosphere to warming temperatures may be exacerbated by amplification of global climate change. For glaciers and ice sheets, this sensitivity is due to a number of non-linear and threshold processes within glacier mass balance and glacier dynamics. Some of this is simply tied to the freezing point of water; snow and ice are no longer viable above 0°C, so a gradual warming that crosses this threshold triggers the onset of melting or gives rise to an abrupt regime shift between snowfall and rainfall. Other non-linear, temperature-dependent processes are more subtle, such as the evolution from polythermal to temperate ice, which supports faster ice flow, a shift from meltwater retention to runoff in temperate or ice-rich (i.e., heavily melt-affected) firn, and transitions from sublimation to melting under warmer and more humid atmospheric conditions. As melt seasons lengthen, there is also a longer snow-free season and an expansion of glacier ablation area, with the increased exposure of low-albedo ice non-linearly increasing melt rates and meltwater runoff. This can be accentuated by increased concentration of particulate matter associated with algal activity, dust loading from adjacent deglaciated terrain, and deposition of impurities from industrial and wildfire activity. The loss of ice and darkening of glaciers represent an effective transition from white to grey in the world's mountain regions. This article discusses these transitions and regime shifts in the context of challenges to model and project glacier and ice sheet response to climate change.


2021 ◽  
Author(s):  
◽  
Heather Purdie

<p>Mountain glaciers are already responding to climatic warming, and are expected to make a substantial contribution to sea-level rise in the coming decades. The aim of this investigation in the New Zealand Southern Alps was to improve our understanding of snow accumulation variability on mid-latitude maritime glaciers, in order to allow for better estimation of future glacier mass balance. The specific aim was to investigate snow accumulation processes at a range of spatial and temporal scales, focussing on synoptic-scale atmospheric circulation influences, moisture sources for snow accumulation and local-scale dependencies of snow accumulation in relation to topography. A range of methods were utilised including direct measurement, snow and ice core analysis, statistical analysis and modelling. Snow accumulation in the Southern Alps was found to be derived predominantly from the Tasman Sea, and deposited during low pressure troughs and fronts. Although precipitation increased with elevation, wind processes redistributed this mass. On a ~monthly timescale this redistribution caused an unexpected result, namely that wind deflation of snow on Franz Josef Glacier countered the effects of greater accumulation, and total accumulation was similar at both Franz Josef and Tasman Glaciers over this period. These processes make it challenging to simulate snow accumulation patterns by simply extrapolating snowfall over an orographic barrier from lowland climate station data. On an inter-annual basis, temperature, especially during the ablation season, had most influence on net accumulation, and warm summers served to homogenise winter variability. Consequently, atmospheric circulation patterns that affect summer temperature, for example the El Niño Southern Oscillation (ENSO) and the Southern Annular Mode (SAM) also influence inter-annual variability in net accumulation. Together, these results highlight the dependence of maritime glaciers in the New Zealand Southern Alps on the prevailing westerly circulation. Although some uncertainty surrounds how global warming will affect atmospheric circulation and synoptic weather patterns, the results of this research indicate that New Zealand glaciers can be expected to lose significant mass in the coming decades if the current positive trend in the SAM continues, and if La Niña events (positive ENSO) become more frequent.</p>


Sign in / Sign up

Export Citation Format

Share Document