scholarly journals Effects of Oil Under Sea Ice

1974 ◽  
Vol 13 (69) ◽  
pp. 473-488
Author(s):  
L. Stephen Wolfe ◽  
David P. Hoult

This paper describes laboratory research performed to determine the effects of crude and diesel oils on the porous sub-structure of Arctic sea ice. It includes a qualitative description of what occurs when oil is placed under the ice and an evaluation of some quantitative measurements made to determine the maximum extent to which crude oil can spread in an Arctic environment.

1974 ◽  
Vol 13 (69) ◽  
pp. 473-488 ◽  
Author(s):  
L. Stephen Wolfe ◽  
David P. Hoult

This paper describes laboratory research performed to determine the effects of crude and diesel oils on the porous sub-structure of Arctic sea ice. It includes a qualitative description of what occurs when oil is placed under the ice and an evaluation of some quantitative measurements made to determine the maximum extent to which crude oil can spread in an Arctic environment.


2009 ◽  
Vol 25 (3) ◽  
pp. 151-162 ◽  
Author(s):  
K. Hatlen ◽  
L. Camus ◽  
J. Berge ◽  
G. H. Olsen ◽  
T. Baussant

2005 ◽  
Vol 53 (1) ◽  
pp. 129-139 ◽  
Author(s):  
Birte Gerdes ◽  
Robin Brinkmeyer ◽  
Gerhard Dieckmann ◽  
Elisabeth Helmke

2019 ◽  
Vol 12 (1) ◽  
pp. 64 ◽  
Author(s):  
Zixuan Li ◽  
Jiechen Zhao ◽  
Jie Su ◽  
Chunhua Li ◽  
Bin Cheng ◽  
...  

Analyses of landfast ice in Arctic coastal areas provide a comprehensive understanding of the variations in Arctic sea ice and generate data for studies on the utilization of the Arctic passages. Based on our analysis, Arctic landfast ice mainly appears in January–June and is distributed within the narrow straits of the Canadian Archipelago (nearly 40%), the coastal areas of the East Siberian Sea, the Laptev Sea, and the Kara Sea. From 1976–2018, the landfast ice extent gradually decreased at an average rate of −1.1 ± 0.5 × 104 km2/yr (10.5% per decade), while the rate of decrease for entire Arctic sea ice was −6.0 ± 2.4 × 104 km2/yr (5.2% per decade). The annual maximum extent reached 2.3 × 106 km2 in the early 1980s, and by 2018, the maximum extent decreased by 0.6 × 106 km2, which is an area approximately equivalent the Laptev Sea. The mean duration of Arctic landfast ice is 44 weeks, which has gradually been reduced at a rate of −0.06 ± 0.03 weeks/yr. Regional landfast ice extent decreases in 16 of the 17 subregions except for the Bering Sea, making it the only subregion where both the extent and duration increases. The maximum mean landfast ice thickness appears in the northern Canadian Archipelago (>2.5 m), with the highest increasing trend (0.1 m/yr). In the Northeast Passage, the mean landfast ice thickness is 1.57 m, with a slight decreasing trend of −1.2 cm/yr, which is smaller than that for entire Arctic sea ice (−5.1 cm/yr). The smaller decreasing trend in the landfast ice extent and thickness suggests that the well-known Arctic sea ice decline largely occurred in the pack ice zone, while the larger relative extent loss indicates a faster ice free future in the landfast ice zone.


2020 ◽  
pp. 024
Author(s):  
Rym Msadek ◽  
Gilles Garric ◽  
Sara Fleury ◽  
Florent Garnier ◽  
Lauriane Batté ◽  
...  

L'Arctique est la région du globe qui s'est réchauffée le plus vite au cours des trente dernières années, avec une augmentation de la température de surface environ deux fois plus rapide que pour la moyenne globale. Le déclin de la banquise arctique observé depuis le début de l'ère satellitaire et attribué principalement à l'augmentation de la concentration des gaz à effet de serre aurait joué un rôle important dans cette amplification des températures au pôle. Cette fonte importante des glaces arctiques, qui devrait s'accélérer dans les décennies à venir, pourrait modifier les vents en haute altitude et potentiellement avoir un impact sur le climat des moyennes latitudes. L'étendue de la banquise arctique varie considérablement d'une saison à l'autre, d'une année à l'autre, d'une décennie à l'autre. Améliorer notre capacité à prévoir ces variations nécessite de comprendre, observer et modéliser les interactions entre la banquise et les autres composantes du système Terre, telles que l'océan, l'atmosphère ou la biosphère, à différentes échelles de temps. La réalisation de prévisions saisonnières de la banquise arctique est très récente comparée aux prévisions du temps ou aux prévisions saisonnières de paramètres météorologiques (température, précipitation). Les résultats ayant émergé au cours des dix dernières années mettent en évidence l'importance des observations de l'épaisseur de la glace de mer pour prévoir l'évolution de la banquise estivale plusieurs mois à l'avance. Surface temperatures over the Arctic region have been increasing twice as fast as global mean temperatures, a phenomenon known as arctic amplification. One main contributor to this polar warming is the large decline of Arctic sea ice observed since the beginning of satellite observations, which has been attributed to the increase of greenhouse gases. The acceleration of Arctic sea ice loss that is projected for the coming decades could modify the upper level atmospheric circulation yielding climate impacts up to the mid-latitudes. There is considerable variability in the spatial extent of ice cover on seasonal, interannual and decadal time scales. Better understanding, observing and modelling the interactions between sea ice and the other components of the climate system is key for improved predictions of Arctic sea ice in the future. Running operational-like seasonal predictions of Arctic sea ice is a quite recent effort compared to weather predictions or seasonal predictions of atmospheric fields like temperature or precipitation. Recent results stress the importance of sea ice thickness observations to improve seasonal predictions of Arctic sea ice conditions during summer.


1988 ◽  
Author(s):  
NAVAL POLAR OCEANOGRAPHY CENTER WASHINGTON DC

1992 ◽  
Author(s):  
NAVAL POLAR OCEANOGRAPHY CENTER WASHINGTON DC

Sign in / Sign up

Export Citation Format

Share Document