scholarly journals Surface Features of Ice Stream B, Marie Byrd Land, West Antarctica

1986 ◽  
Vol 8 ◽  
pp. 168-170 ◽  
Author(s):  
P.L. Vornberger ◽  
I.M. Whillans

Aerial photographs have been obtained of Ice Stream B, one of the active ice streams draining the West Antarctic Ice Sheet. A sketch map made from these photographs shows two tributaries. The margin of the active ice is marked by curved crevasses and intense crevassing occurs just inward of them. Transverse crevasses dominate the center of the ice streams and diagonal types appear at the lower end. A “suture zone” originates at the tributary convergence and longitudinal surface ridges occur at the downglacier end. The causes of these surface features are discussed and the relative importance of four stresses in resisting the driving stress is assessed. We conclude that basal drag may be important, longitudinal compression is probably important at the lower end, and longitudinal tension is probably most important near the head of the ice stream. Side drag leads to shearing at the margins, but does not restrain much of the ice stream.

1986 ◽  
Vol 8 ◽  
pp. 168-170 ◽  
Author(s):  
P.L. Vornberger ◽  
I.M. Whillans

Aerial photographs have been obtained of Ice Stream B, one of the active ice streams draining the West Antarctic Ice Sheet. A sketch map made from these photographs shows two tributaries. The margin of the active ice is marked by curved crevasses and intense crevassing occurs just inward of them. Transverse crevasses dominate the center of the ice streams and diagonal types appear at the lower end. A “suture zone” originates at the tributary convergence and longitudinal surface ridges occur at the downglacier end. The causes of these surface features are discussed and the relative importance of four stresses in resisting the driving stress is assessed. We conclude that basal drag may be important, longitudinal compression is probably important at the lower end, and longitudinal tension is probably most important near the head of the ice stream. Side drag leads to shearing at the margins, but does not restrain much of the ice stream.


1988 ◽  
Vol 11 ◽  
pp. 210 ◽  
Author(s):  
Sean T. Rooney ◽  
D. D. Blankenship ◽  
R. B. Alley ◽  
C. R. Bentley

Seismic-reflection profiling has previously shown that, at least at one location. Ice Stream Β in West Antarctica rests on a layer of till a few meters thick (Blankenship and others 1986). Analyses of both compressional- and shear-wave seismic reflections from the ice–till boundary confirm the results of those earlier studies, which showed that the till is water-saturated and has a high porosity and low differential pressure. We conclude that this till is basically homogeneous, at least on a scale of tens of kilometers, though some evidence that its properties vary laterally can be discerned in these data. We propose that the till is widespread beneath Ice Stream Β and probably also beneath the other West Antarctic ice streams. Our seismic profiling shows that the till is essentially continuous beneath Ice Stream Β over at least 12 km parallel to ice flow and 8 km transverse to flow. Beneath these profiles the till averages about 6.5 m thick and is present everywhere except possibly on isolated bedrock ridges parallel to ice flow. The till thickness on these bedrock ridges falls to less than 2 m, the limit of our seismic resolution, but there is evidence that the ridges do not impede ice flow substantially. The bedrock beneath the till is fluted parallel to flow, with flutes that are 10–13 m deep by 200–1000 m wide; we believe these flutes are formed by erosion beneath a deforming till. We also observe an angular unconformity at the base of the till, which is consistent with the idea that erosion is occurring there. The sedimentary record in the Ross Embayment looks very similar to that beneath Ice Stream B, i.e. a few meters of till resting unconformably (the Ross Sea unconformity) on lithified sedimentary rock, and we postulate that the Ross Sea unconformity was generated by erosion beneath a grounded ice sheet by a deforming till.


1988 ◽  
Vol 11 ◽  
pp. 210-210
Author(s):  
Sean T. Rooney ◽  
D. D. Blankenship ◽  
R. B. Alley ◽  
C. R. Bentley

Seismic-reflection profiling has previously shown that, at least at one location. Ice Stream Β in West Antarctica rests on a layer of till a few meters thick (Blankenship and others 1986). Analyses of both compressional- and shear-wave seismic reflections from the ice–till boundary confirm the results of those earlier studies, which showed that the till is water-saturated and has a high porosity and low differential pressure. We conclude that this till is basically homogeneous, at least on a scale of tens of kilometers, though some evidence that its properties vary laterally can be discerned in these data. We propose that the till is widespread beneath Ice Stream Β and probably also beneath the other West Antarctic ice streams.Our seismic profiling shows that the till is essentially continuous beneath Ice Stream Β over at least 12 km parallel to ice flow and 8 km transverse to flow. Beneath these profiles the till averages about 6.5 m thick and is present everywhere except possibly on isolated bedrock ridges parallel to ice flow. The till thickness on these bedrock ridges falls to less than 2 m, the limit of our seismic resolution, but there is evidence that the ridges do not impede ice flow substantially. The bedrock beneath the till is fluted parallel to flow, with flutes that are 10–13 m deep by 200–1000 m wide; we believe these flutes are formed by erosion beneath a deforming till. We also observe an angular unconformity at the base of the till, which is consistent with the idea that erosion is occurring there. The sedimentary record in the Ross Embayment looks very similar to that beneath Ice Stream B, i.e. a few meters of till resting unconformably (the Ross Sea unconformity) on lithified sedimentary rock, and we postulate that the Ross Sea unconformity was generated by erosion beneath a grounded ice sheet by a deforming till.


2014 ◽  
Vol 26 (6) ◽  
pp. 674-686 ◽  
Author(s):  
C.J. Fogwill ◽  
C.S.M. Turney ◽  
N.R. Golledge ◽  
D.H. Rood ◽  
K. Hippe ◽  
...  

AbstractDetermining the millennial-scale behaviour of marine-based sectors of the West Antarctic Ice Sheet (WAIS) is critical to improve predictions of the future contribution of Antarctica to sea level rise. Here high-resolution ice sheet modelling was combined with new terrestrial geological constraints (in situ14C and 10Be analysis) to reconstruct the evolution of two major ice streams entering the Weddell Sea over 20 000 years. The results demonstrate how marked differences in ice flux at the marine margin of the expanded Antarctic ice sheet led to a major reorganization of ice streams in the Weddell Sea during the last deglaciation, resulting in the eastward migration of the Institute Ice Stream, triggering a significant regional change in ice sheet mass balance during the early to mid Holocene. The findings highlight how spatial variability in ice flow can cause marked changes in the pattern, flux and flow direction of ice streams on millennial timescales in this marine ice sheet setting. Given that this sector of the WAIS is assumed to be sensitive to ocean-forced instability and may be influenced by predicted twenty-first century ocean warming, our ability to model and predict abrupt and extensive ice stream diversions is key to a realistic assessment of future ice sheet sensitivity.


1993 ◽  
Vol 39 (133) ◽  
pp. 528-537 ◽  
Author(s):  
W. Jacobel Robert ◽  
M. Gades Anthony ◽  
L. Gottschling David ◽  
M. Hodge Steven ◽  
L. Wright David

AbstractLow-frequency surface-based radar-profiling experiments on Ice Streams Β and C, West Antarctica, have yielded high-resolution images which depict folding of the internal layers that can aid in the interpretation of ice-stream dynamics. Unlike folding seen in most earlier radar studies of ice sheets, the present structures have no relationship to bedrock topography and show tilting of their axial fold planes in the flow direction. Rather than being standing waves created by topography or local variations in basal shear stress, the data show that these folds originate upstream of the region of streaming flow and are advected into the ice streams. The mechanism for producing folds is hypothesized to be changes in the basal boundary conditions as the ice makes the transition from inland ice to ice-stream flow. Migration of this transition zone headward can then cause folds in the internal layering to be propagated down the ice streams.


1998 ◽  
Vol 44 (146) ◽  
pp. 149-156 ◽  
Author(s):  
C. R. Bentley ◽  
N. Lord ◽  
C. Liu

AbstractDigital airborne radar data were collected during the 1987-88 Antarctic field season in nine gridded blocks covering the downstream portions of Ice Stream B (6km spacing) and Ice Stream C (11 km spacing), together with a portion of ridge BC between them. An automated processing procedure was used for picking onset times of the reflected radar pulses, converting travel times to distances, interpolating missing data, converting pressure transducer readings, correcting navigational drift, performing crossover analysis, and zeroing rémanent crossover errors. Interpolation between flight-lines was carried out using the minimum curvature method.Maps of ice thickness (estimated accuracy 20 m) and basal-reflection strength (estimated accuracy 1 dB) were produced. The ice-thickness map confirms the characteristics of previous reconnaissance maps and reveals no new features. The reflection-strength map shows pronounced contrasts between the ice streams and ridge BC and between the two ice streams themselves. We interpret the reflection strengths to mean that the bed of Ice Stream C, as well as that of Ice Stream B, is unfrozen, that the bed of ridge BC is frozen and that the boundary between the frozen bed of ridge BC and the unfrozen bed of Ice Stream C lies precisely below the former shear margin of the ice stream.


1988 ◽  
Vol 11 ◽  
pp. 199 ◽  
Author(s):  
D. D. Blankenship ◽  
C. R. Bentley

Both in the interior of West Antarctica and on Ross Ice Shelf the ice column is dominated by ice with a distinct preferred c-axis orientation. An understanding of the dynamics of the West Antarctic ice sheet requires that we know the gross crystalline structure that characterizes each of its glaciological regimes (i.e. ice sheet, ice stream, and ice shelf). An important question is whether the strong fabric of the interior ice is preserved when this ice passes through the zone in which it is accelerated from sheet flow to stream flow, a zone that must be marked by strong longitudinal extension. Using generalized inverse techniques we have inverted seismic-reflection travel times observed at Upstream Β camp (on Ice Stream B) to obtain the gross crystalline structure of the ice column at that location. We find that the strong fabrics of the interior are indeed destroyed; only a slight preferred orientation remains. The evidence at Upstream Β camp is particularly strong because shear waves of both polarizations, which are particularly sensitive indicators of anisotropy, were analyzed as well as P-waves.


2003 ◽  
Vol 36 ◽  
pp. 251-256 ◽  
Author(s):  
Byron R. Parizek ◽  
Richard B. Alley ◽  
Christina L. Hulbe

AbstractChanges in the discharge of West Antarctic ice streams are of potential concern with respect to global sea level. The six relatively thin, fast-flowing Ross ice streams are of interest as low-slope end-members among Antarctic ice streams. Extensive research has demonstrated that these “rivers of ice” have a history of relatively high-frequency , asynchronous discharge variations with evolving lateral boundaries. Amidst this variability, a ∼1300 km grounding-line retreat has occurred since the Last Glacial Maximum. Numerical studies of Ice Stream D (Parizek and others, 2002) indicate that a proposed thermal-regulation mechanism (Clarke and Marshall, 1998; Hulbe and MacAyeal, 1999; Tulaczyk and others, 2000a, b), which could buffer the West Antarctic ice sheet against complete collapse, may be over-ridden by latent-heat transport within melt-water from beneath inland ice. Extending these studies to Ice Stream A, Whillans Ice Stream and Ice Stream C suggests that further grounding-line retreat contributing to sea-level rise is possible thermodynamically However, the efficiency of basal water distribution may be a constraint on the system. Because local thermal deficits promote basal freeze-on (especially on topographic highs), observed short-term variability is likely to persist.


2005 ◽  
Vol 41 ◽  
pp. 47-51 ◽  
Author(s):  
Robert W. Jacobel ◽  
Brian C. Welch

AbstractDeep radar soundings as part of the International Trans-Antarctic Scientific Expedition (US-ITASE) traverses in West Antarctica have revealed a bright internal reflector that we have imaged throughout widespread locations across the ice sheet. The layer is seen in traverses emanating from Byrd Station in four directions and has been traced continuously for distances of 535km toward the Weddell Sea drainage, 500km toward South Pole, 150km toward the Executive Committee Range and 160km toward Kamb Ice Stream (former Ice Stream C). The approximate area encompassed by the layer identified in these studies is 250 000km2. If the layer identification can also be extended to Siple Dome where we have additional radar soundings (Jacobel and others, 2000), the approximate area covered would increase by 50%. In many locations echo strength from the layer rivals the bed echo in amplitude even though it generally lies at a depth greater than half the ice thickness. At Byrd Station, where the layer depth is 1260 m, an age of ~17.5 kyr BP has been assigned based on the Blunier and Brook (2001) chronology. Hammer and others (1997) note that the acidity at this depth is >20 times the amplitude of any other part of the core. The depiction of this strong and widespread dated isochrone provides a unique time marker for much of the ice in West Antarctica. We apply a layer-tracing technique to infer the depth–time scale at the inland West Antarctic ice sheet divide and use this in a simple model to estimate the average accumulation rate.


Sign in / Sign up

Export Citation Format

Share Document