scholarly journals Dynamic Hierarchical Cache Management for Cloud RAN and Multi- Access Edge Computing in 5G Networks

2018 ◽  
Author(s):  
Deepika Pathinga Rajendiran
2019 ◽  
Vol 10 (1) ◽  
pp. 203 ◽  
Author(s):  
Luan N. T. Huynh ◽  
Quoc-Viet Pham ◽  
Xuan-Qui Pham ◽  
Tri D. T. Nguyen ◽  
Md Delowar Hossain ◽  
...  

In recent years, multi-access edge computing (MEC) has become a promising technology used in 5G networks based on its ability to offload computational tasks from mobile devices (MDs) to edge servers in order to address MD-specific limitations. Despite considerable research on computation offloading in 5G networks, this activity in multi-tier multi-MEC server systems continues to attract attention. Here, we investigated a two-tier computation-offloading strategy for multi-user multi-MEC servers in heterogeneous networks. For this scenario, we formulated a joint resource-allocation and computation-offloading decision strategy to minimize the total computing overhead of MDs, including completion time and energy consumption. The optimization problem was formulated as a mixed-integer nonlinear program problem of NP-hard complexity. Under complex optimization and various application constraints, we divided the original problem into two subproblems: decisions of resource allocation and computation offloading. We developed an efficient, low-complexity algorithm using particle swarm optimization capable of high-quality solutions and guaranteed convergence, with a high-level heuristic (i.e., meta-heuristic) that performed well at solving a challenging optimization problem. Simulation results indicated that the proposed algorithm significantly reduced the total computing overhead of MDs relative to several baseline methods while guaranteeing to converge to stable solutions.


Author(s):  
Deepika Pathinga Rajendiran ◽  
Yihang Tang ◽  
Melody Moh

Using a cache to improve efficiency and to save on the cost of a computer system has been a field that attracts many researchers, including those in the area of cellular network systems. The first part of this chapter focuses on adaptive cache management schemes for cloud radio access networks (CRAN) and multi-access edge computing (MEC) of 5G mobile technologies. Experimental results run through CloudSim show that the proposed adaptive algorithms are effective in increasing cache hit rate, guaranteeing QoS, and in reducing algorithm execution time. In second part of this chapter, a new cache management algorithm using Zipf distribution to address dynamic input is proposed for CRAN and MEC models. A performance test is also run using iFogSim to show the improvement made by the proposed algorithm over the original versions. This work contributes in the support of 5G for IoT by enhancing CRAN and MEC performance; it also contributes to how novel caching algorithms can resolve the unbalanced input load caused by changing distributions of the input traffic.


Author(s):  
Deepika Pathinga Rajendiran ◽  
Yihang Tang ◽  
Melody Moh

Using a cache to improve efficiency and to save on the cost of a computer system has been a field that attracts many researchers, including those in the area of cellular network systems. The first part of this chapter focuses on adaptive cache management schemes for cloud radio access networks (CRAN) and multi-access edge computing (MEC) of 5G mobile technologies. Experimental results run through CloudSim show that the proposed adaptive algorithms are effective in increasing cache hit rate, guaranteeing QoS, and in reducing algorithm execution time. In second part of this chapter, a new cache management algorithm using Zipf distribution to address dynamic input is proposed for CRAN and MEC models. A performance test is also run using iFogSim to show the improvement made by the proposed algorithm over the original versions. This work contributes in the support of 5G for IoT by enhancing CRAN and MEC performance; it also contributes to how novel caching algorithms can resolve the unbalanced input load caused by changing distributions of the input traffic.


2019 ◽  
Vol 3 (2) ◽  
pp. 26-34 ◽  
Author(s):  
Lanfranco Zanzi ◽  
Flavio Cirillo ◽  
Vincenzo Sciancalepore ◽  
Fabio Giust ◽  
Xavier Costa-Perez ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document