scholarly journals Locally Acquired Human Infection with Swine-Origin Influenza A(H3N2) Variant Virus, Australia, 2018

2020 ◽  
Vol 26 (1) ◽  
pp. 143-147 ◽  
Author(s):  
Yi-Mo Deng ◽  
Frank Y.K. Wong ◽  
Natalie Spirason ◽  
Matthew Kaye ◽  
Rebecca Beazley ◽  
...  
2020 ◽  
Vol 26 (1) ◽  
Author(s):  
Yi-Mo Deng ◽  
Frank Y.K. Wong ◽  
Natalie Spirason ◽  
Matthew Kaye ◽  
Rebecca Beazley ◽  
...  

2018 ◽  
Vol 63 (16) ◽  
pp. 1043-1050 ◽  
Author(s):  
Xiang Huo ◽  
Lun-biao Cui ◽  
Cong Chen ◽  
Dayan Wang ◽  
Xian Qi ◽  
...  

2017 ◽  
Vol 9 (1) ◽  
Author(s):  
Xin Wang ◽  
Shisong Fang

ObjectiveTo determine avian influenza A(H5N6) virus infection in humanand environment using extensive surveillances. To evaluate theprevalence of H5N6 infection among high risk population.IntroductionSince the emergence of avian influenza A(H7N9) virus in 2013,extensive surveillances have been established to monitor the humaninfection and environmental contamination with avian influenza virusin southern China. At the end of 2015, human infection with influenzaA(H5N6) virus was identified in Shenzhen for the first time throughthese surveillances. These surveillances include severe pneumoniascreening, influenza like illness (ILI) surveillance, follow-up onclose contact of the confirmed case, serological survey among poultryworkers, environment surveillance in poultry market.MethodsSevere pneumonia screening was carried out in all hospitals ofShenzhen. When a patient with severe pneumonia is suspected forinfection with avian influenza virus, after consultation with at leasttwo senior respiratory physicians from the designated expert paneland gaining their approval, the patient will be reported to local CDC,nasal and pharyngeal swabs will be collected and sent for detectionof H5N6 virus by RT-PCR.ILI surveillance was conducted in 11 sentinel hospitals, 5-20 ILIcases were sampled for detection of seasonal influenza virus by RT-PCR test every week for one sentinel. If swab sample is tested positivefor influenza type A and negative for subtypes of seasonal A(H3N2)and A(H1N1), it will be detected further for influenza A(H5N6) virus.Follow-up on close contacts was immediately carried out whenhuman case of infection with H5N6 was identified. All of closecontacts were requested to report any signs and symptoms of acuterespiratory illness for 10 days, nasal and pharyngeal swabs werecollected and tested for influenza A(H5N6) virus by RT-PCR test.In the meantime, environmental samples were collected in the marketwhich was epidemiologically associated with patient and tested forH5N6 virus by RT-PCR test.Serological survey among poultry workers was conducted in tendistricts of Shenzhen. Poultry workers were recruited in poultrymarkets and screened for any signs and symptoms of acute respiratoryillness, blood samples were collected to detect haemagglutination-inhibition (HI) antibody for influenza A(H5N6) virus.Environment surveillance was conducted twice a month in tendistricts of Shenzhen. For each district, 10 swab samples werecollected at a time. All environmental samples were tested forinfluenza A(H5N6) virus by RT-PCR test.ResultsFrom Nov 1, 2015 to May 31, 2016, 50 patients with severepneumonia were reported and detected for H5N6 virus, three patientswere confirmed to be infected with H5N6 virus. Case 1 was a 26 yearsold woman and identified on Dec 29, 2015. She purchased a duck ata live poultry stall of nearby market, cooked and ate the duck 4 daysbefore symptom onset. After admission to hospital on Dec 27, hercondition deteriorated rapidly, on Dec 30 she died. The case 2 was a25 years old man and confirmed on Jan 7, 2016. He visited a marketeveryday and had no close contact with poultry, except for passingby live poultry stalls. He recovered and was discharged from hospitalon Jan 22. The case 3 was is a 31 years old woman and reported onJan 16, 2016, she had no contact with live poultry and died on Feb 8.For 60 close contacts of three cases, none of them reported signsor symptoms of acute respiratory illness, all of nasal and pharyngealswabs were tested negative for influenza A(H5N6) virus by RT-PCRtest. Of 146 environmental swabs collected in the case’s living placesand relevant poultry markets, 38 were tested positive for influenzaA(H5N6) virus by RT-PCR test.From Nov 1, 2015 to May 31, 2016, 2812 ILI cases were sampledand tested for influenza type A and subtypes of seasonal influenza.Those samples tested positive for influenza type A could be furthersubtyped to seasonal A(H3N2) or A(H1N1), therefore no sample fromILI case was tested for influenza A(H5N6) virus.Serological surveys among poultry workers were conductedtwice, for the first survey 186 poultry workers were recruited in Oct2015, for the second survey 195 poultry workers were recruited inJan 2016. Blood sample were collected and tested for HI antibodyof influenza A(H5N6) virus. 2 individuals had H5N6 HI antibodytiter of 1:40, 5 individuals had H5N6 HI antibody titer of 1:20, rest ofthem had H5N6 HI antibody titer of <1:20. According to the WHOguideline, HI antibody titer of≥1:160 against avian influenza viruswere considered positive.From Nov 1, 2015 to May 31, 2016, of 1234 environmental swabscollected in poultry markets, 339 (27.5%)were tested positive forinfluenza A(H5N6) virus by RT-PCR test. Each of the ten districtshad poultry markets which was contaminated by influenza A(H5N6)virus.ConclusionsIn 2015-2016 winter, three cases of infection with influenzaA(H5N6) virus were identified in Shenzhen, all of them were youngindividuals with average age of 27.3 years and developed severepneumonia soon after illness onset, two cases died. For acute andsevere disease, early detection and treatment is the key measure forpatient’s prognosis.H5N6 virus was identified in poultry market and other placeswhere patient appeared, implying poultry market probably was thesource of infection. Despite the high contamination rate of H5N6virus in poultry market, we found that the infection with H5N6 virusamong poultry workers was not prevalent, with infection rate being0/381. Human infection with H5N6 virus seemed to be a sporadicoccurrence, poultry-human transmission of H5N6 virus might not bevery effective.


2021 ◽  
Vol 23 (103) ◽  
pp. 15-20
Author(s):  
O. S. Kalinina

Data on viral food contaminants that are actually or potentially capable of realizing the food route of infection are presented. The main sources of infection of food with viruses are named: human waste / faeces, contaminated food processing facilities, animals-carriers of zooanthroponotic infections. The groups of viruses transmitted through food are characterized: 1) gastroenteritis pathogens – Sapporo and Norwalk viruses from the family Caliciviridae; Rotavirus A from the family Reoviridae; Mammastroviruses 1, 6, 8 and 9 from the family Astroviridae; Human mastadenovirus F from the family Adenoviridae; Aichivirus A from the family Picornaviridae; 2) Hepatovirus A from the family Picornaviridae and Orthohepevirus A from the family Hepeviridae (with replication in the liver); 3) viruses with replication in the human intestine, which after generalization of the infection affect the CNS – Еnteroviruses B and C from the family Picornaviridae. The stability and survival time of viruses in the environment and food are shown. The main ways of transmission of viruses that are able to enter the human body through infected foods are considered. Influenza A (H1N1) virus has been identified as a possible contaminant in pork and chicken, which without heat treatment can pose a potential risk of human infection. The ability of classical and African swine fever pathogens to remain viable after industrial processing of meat or raw meat has been shown. Families of viruses whose zoopathogenic representatives can contaminate meat products (beef, pork, chicken) are named: Parvoviridae, Anelloviridae, Circoviridae, Polyomaviridae, Smacoviridae. To determine the possible latent infection of people with these viruses, it is necessary to test sera for the presence of specific antibodies. The detection of gyroviruses of the family Anelloviridae and huchismacoviruses of the family Smacoviridae in human faeces may be due to the consumption of infected chicken meat. Data on extraction and concentration methods and methods of virus detection in contaminated food products: PCR (reverse transcription and real-time), ELISA, IСA, electron microscopy, virus isolation in transplanted cell cultures with subsequent identification in serological reactions, NR, IFА, ELISA) or PCR.


2020 ◽  
Vol 91 ◽  
pp. 169-173 ◽  
Author(s):  
Zayid K. Almayahi ◽  
Hanan Al Kindi ◽  
C. Todd Davies ◽  
Bader Al-Rawahi ◽  
Amina Al-Jardani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document