Schrödinger–Poisson system with zero mass and convolution nonlinearity in R 2

2021 ◽  
pp. 1-21
Author(s):  
Heng Yang

In this paper, we prove the existence of nontrivial solutions and ground state solutions for the following planar Schrödinger–Poisson system with zero mass − Δ u + ϕ u = ( I α ∗ F ( u ) ) f ( u ) , x ∈ R 2 , Δ ϕ = u 2 , x ∈ R 2 , where α ∈ ( 0 , 2 ), I α : R 2 → R is the Riesz potential, f ∈ C ( R , R ) is of subcritical exponential growth in the sense of Trudinger–Moser. In particular, some new ideas and analytic technique are used to overcome the double difficulties caused by the zero mass case and logarithmic convolution potential.

2021 ◽  
Vol 19 (1) ◽  
pp. 297-305
Author(s):  
Yuting Zhu ◽  
Chunfang Chen ◽  
Jianhua Chen ◽  
Chenggui Yuan

Abstract In this paper, we study the following generalized Kadomtsev-Petviashvili equation u t + u x x x + ( h ( u ) ) x = D x − 1 Δ y u , {u}_{t}+{u}_{xxx}+{\left(h\left(u))}_{x}={D}_{x}^{-1}{\Delta }_{y}u, where ( t , x , y ) ∈ R + × R × R N − 1 \left(t,x,y)\in {{\mathbb{R}}}^{+}\times {\mathbb{R}}\times {{\mathbb{R}}}^{N-1} , N ≥ 2 N\ge 2 , D x − 1 f ( x , y ) = ∫ − ∞ x f ( s , y ) d s {D}_{x}^{-1}f\left(x,y)={\int }_{-\infty }^{x}f\left(s,y){\rm{d}}s , f t = ∂ f ∂ t {f}_{t}=\frac{\partial f}{\partial t} , f x = ∂ f ∂ x {f}_{x}=\frac{\partial f}{\partial x} and Δ y = ∑ i = 1 N − 1 ∂ 2 ∂ y i 2 {\Delta }_{y}={\sum }_{i=1}^{N-1}\frac{{\partial }^{2}}{{\partial }_{{y}_{i}}^{2}} . We get the existence of infinitely many nontrivial solutions under certain assumptions in bounded domain without Ambrosetti-Rabinowitz condition. Moreover, by using the method developed by Jeanjean [13], we establish the existence of ground state solutions in R N {{\mathbb{R}}}^{N} .


2013 ◽  
Vol 13 (3) ◽  
Author(s):  
Jun Wang ◽  
Lixin Tian ◽  
Junxiang Xu ◽  
Fubao Zhang

AbstractIn this paper, we study the existence and concentration of positive ground state solutions for the semilinear Schrödinger-Poisson systemwhere ε > 0 is a small parameter and λ ≠ 0 is a real parameter, f is a continuous superlinear and subcritical nonlinearity. Suppose that b(x) has a maximum. We prove that the system has a positive ground state solution


2019 ◽  
Vol 21 (06) ◽  
pp. 1850027 ◽  
Author(s):  
Zhipeng Yang ◽  
Yuanyang Yu ◽  
Fukun Zhao

We are concerned with the existence and concentration behavior of ground state solutions of the fractional Schrödinger–Poisson system with critical nonlinearity [Formula: see text] where [Formula: see text] is a small parameter, [Formula: see text], [Formula: see text], [Formula: see text] denotes the fractional Laplacian of order [Formula: see text] and satisfies [Formula: see text]. The potential [Formula: see text] is continuous and positive, and has a local minimum. We obtain a positive ground state solution for [Formula: see text] small, and we show that these ground state solutions concentrate around a local minimum of [Formula: see text] as [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document