Concentration behavior of ground state solutions for a fractional Schrödinger–Poisson system involving critical exponent

2019 ◽  
Vol 21 (06) ◽  
pp. 1850027 ◽  
Author(s):  
Zhipeng Yang ◽  
Yuanyang Yu ◽  
Fukun Zhao

We are concerned with the existence and concentration behavior of ground state solutions of the fractional Schrödinger–Poisson system with critical nonlinearity [Formula: see text] where [Formula: see text] is a small parameter, [Formula: see text], [Formula: see text], [Formula: see text] denotes the fractional Laplacian of order [Formula: see text] and satisfies [Formula: see text]. The potential [Formula: see text] is continuous and positive, and has a local minimum. We obtain a positive ground state solution for [Formula: see text] small, and we show that these ground state solutions concentrate around a local minimum of [Formula: see text] as [Formula: see text].

2013 ◽  
Vol 13 (3) ◽  
Author(s):  
Jun Wang ◽  
Lixin Tian ◽  
Junxiang Xu ◽  
Fubao Zhang

AbstractIn this paper, we study the existence and concentration of positive ground state solutions for the semilinear Schrödinger-Poisson systemwhere ε > 0 is a small parameter and λ ≠ 0 is a real parameter, f is a continuous superlinear and subcritical nonlinearity. Suppose that b(x) has a maximum. We prove that the system has a positive ground state solution


2019 ◽  
Vol 19 (4) ◽  
pp. 779-795
Author(s):  
Guangze Gu ◽  
Xianhua Tang

AbstractIn this paper, we consider the Kirchhoff equation with Hartree-type nonlinearity\left\{\begin{aligned} \displaystyle-&\displaystyle\biggl{(}\varepsilon^{2}a+% \varepsilon b\int_{\mathbb{R}^{3}}\lvert\nabla u\rvert^{2}\mathop{}\!dx\biggr{% )}\Delta u+V(x)u=\varepsilon^{\mu-3}\biggl{(}\int_{\mathbb{R}^{3}}\frac{K(y)F(% u(y))}{\lvert x-y\rvert^{\mu}}\mathop{}\!dy\biggr{)}K(x)f(u),\\ &\displaystyle u\in H^{1}(\mathbb{R}^{3}),\end{aligned}\right.where {\varepsilon>0} is a small parameter, {a,b>0}, {\mu\in(0,3)}, {V,K} are two positive continuous function and F is the primitive function of f which is superlinear but subcritical at infinity in the sense of the Hardy–Littlewood–Sobolev inequality. We show that the equation admits a positive ground state solution for {\varepsilon>0} sufficiently small. Furthermore, we prove that these ground state solutions concentrate around such points which are both the minima points of the potential V and the maximum points of the potential K as {\varepsilon\to 0}.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Wenxuan Zheng ◽  
Wenbin Gan ◽  
Shibo Liu

AbstractIn this paper, we prove the existence of positive ground state solutions of the Schrödinger–Poisson system involving a negative nonlocal term and critical exponent on a bounded domain. The main tools are the mountain pass theorem and the concentration compactness principle.


Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 779 ◽  
Author(s):  
Jianqing Chen ◽  
Qian Zhang

We study the following quasilinear Schrödinger equation involving critical exponent - Δ u + V ( x ) u - Δ ( u 2 ) u = A ( x ) | u | p - 1 u + λ B ( x ) u 3 N + 2 N - 2 , u ( x ) > 0 for x ∈ R N and u ( x ) → 0 as | x | → ∞ . By using a monotonicity trick and global compactness lemma, we prove the existence of positive ground state solutions of Pohožaev type. The nonlinear term | u | p - 1 u for the well-studied case p ∈ [ 3 , 3 N + 2 N - 2 ) , and the less-studied case p ∈ [ 2 , 3 ) , and for the latter case few existence results are available in the literature. Our results generalize partial previous works.


2021 ◽  
Vol 6 (11) ◽  
pp. 12929-12951
Author(s):  
Xudong Shang ◽  

<abstract><p>In this work, we study the existence, multiplicity and concentration behavior of positive solutions for the following problem involving the fractional $ p $-Laplacian</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{eqnarray*} \varepsilon^{ps}(-\Delta )^{s}_{p}u + V(x)|u|^{p-2}u = \varepsilon^{\mu-N}(\frac{1}{|x|^{\mu}}\ast K|u|^{q})K(x)|u|^{q-2}u \hskip0.2cm\text{in}\hskip0.1cm \mathbb{R}^{N}, \end{eqnarray*} $\end{document} </tex-math></disp-formula></p> <p>where $ 0 &lt; s &lt; 1 &lt; p &lt; \infty $, $ N &gt; ps $, $ 0 &lt; \mu &lt; ps $, $ p &lt; q &lt; \frac{p^{*}_{s}}{2}(2-\frac{\mu}{N}) $, $ (-\Delta)^{s}_{p} $ is the fractional $ p $-Laplacian and $ \varepsilon &gt; 0 $ is a small parameter. Under certain conditions on $ V $ and $ K $, we prove the existence of a positive ground state solution and express the location of concentration in terms of the potential functions $ V $ and $ K $. In particular, we relate the number of solutions with the topology of the set where $ V $ attains its global minimum and $ K $ attains its global maximum.</p></abstract>


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Dandan Yang ◽  
Chuanzhi Bai

AbstractIn this paper, we investigate the following fractional Schrödinger–Poisson system: $$\left \{ \textstyle\begin{array}{l@{\quad}l} (-\Delta)^{s} u + u + \phi u = f(u), & \text{in } \mathbb{R}^{3}, \\ (-\Delta)^{t} \phi= u^{2}, & \text{in } \mathbb{R}^{3}, \end{array}\displaystyle \right . $${(−Δ)su+u+ϕu=f(u),in R3,(−Δ)tϕ=u2,in R3, where $\frac{3}{4} < s < 1$34<s<1, $\frac{1}{2} < t < 1$12<t<1, and f is a continuous function, which is superlinear at zero, with $f(\tau) \tau \ge3 F(\tau) \ge0$f(τ)τ≥3F(τ)≥0, $F(\tau) = \int_{0}^{\tau} f(s) \,ds$F(τ)=∫0τf(s)ds, $\tau \in\mathbb{R}$τ∈R. We prove that the system admits a ground state solution under the asymptotically 2-linear condition. The result here extends the existing study.


Sign in / Sign up

Export Citation Format

Share Document