scholarly journals Multiple solutions and ground state solutions for a class of generalized Kadomtsev-Petviashvili equation

2021 ◽  
Vol 19 (1) ◽  
pp. 297-305
Author(s):  
Yuting Zhu ◽  
Chunfang Chen ◽  
Jianhua Chen ◽  
Chenggui Yuan

Abstract In this paper, we study the following generalized Kadomtsev-Petviashvili equation u t + u x x x + ( h ( u ) ) x = D x − 1 Δ y u , {u}_{t}+{u}_{xxx}+{\left(h\left(u))}_{x}={D}_{x}^{-1}{\Delta }_{y}u, where ( t , x , y ) ∈ R + × R × R N − 1 \left(t,x,y)\in {{\mathbb{R}}}^{+}\times {\mathbb{R}}\times {{\mathbb{R}}}^{N-1} , N ≥ 2 N\ge 2 , D x − 1 f ( x , y ) = ∫ − ∞ x f ( s , y ) d s {D}_{x}^{-1}f\left(x,y)={\int }_{-\infty }^{x}f\left(s,y){\rm{d}}s , f t = ∂ f ∂ t {f}_{t}=\frac{\partial f}{\partial t} , f x = ∂ f ∂ x {f}_{x}=\frac{\partial f}{\partial x} and Δ y = ∑ i = 1 N − 1 ∂ 2 ∂ y i 2 {\Delta }_{y}={\sum }_{i=1}^{N-1}\frac{{\partial }^{2}}{{\partial }_{{y}_{i}}^{2}} . We get the existence of infinitely many nontrivial solutions under certain assumptions in bounded domain without Ambrosetti-Rabinowitz condition. Moreover, by using the method developed by Jeanjean [13], we establish the existence of ground state solutions in R N {{\mathbb{R}}}^{N} .

2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Wenxuan Zheng ◽  
Wenbin Gan ◽  
Shibo Liu

AbstractIn this paper, we prove the existence of positive ground state solutions of the Schrödinger–Poisson system involving a negative nonlocal term and critical exponent on a bounded domain. The main tools are the mountain pass theorem and the concentration compactness principle.


Author(s):  
Nikolaos S. Papageorgiou ◽  
Vicenţiu D. Rădulescu ◽  
Youpei Zhang

AbstractWe study a double phase Neumann problem with a superlinear reaction which need not satisfy the Ambrosetti-Rabinowitz condition. Using the Nehari manifold method, we show that the problem has at least three nontrivial bounded ground state solutions, all with sign information (positive, negative and nodal).


2018 ◽  
Vol 9 (1) ◽  
pp. 108-123 ◽  
Author(s):  
Claudianor O. Alves ◽  
Grey Ercole ◽  
M. Daniel Huamán Bolaños

Abstract We prove the existence of at least one ground state solution for the semilinear elliptic problem \left\{\begin{aligned} \displaystyle-\Delta u&\displaystyle=u^{p(x)-1},\quad u% >0,\quad\text{in}\ G\subseteq\mathbb{R}^{N},\ N\geq 3,\\ \displaystyle u&\displaystyle\in D_{0}^{1,2}(G),\end{aligned}\right. where G is either {\mathbb{R}^{N}} or a bounded domain, and {p\colon G\to\mathbb{R}} is a continuous function assuming critical and subcritical values.


2022 ◽  
Vol 40 ◽  
pp. 1-10
Author(s):  
Duong Trong Luyen ◽  
Le Thi Hong Hanh

In this paper, we study the existence of multiple solutions for the boundary value problem\begin{equation}\Delta_{\gamma} u+f(x,u)=0 \quad \mbox{ in } \Omega, \quad \quad u=0 \quad \mbox{ on } \partial \Omega, \notag\end{equation}where $\Omega$ is a bounded domain with smooth boundary in $\mathbb{R}^N \ (N \ge 2)$ and $\Delta_{\gamma}$ is the subelliptic operator of the type $$\Delta_\gamma: =\sum\limits_{j=1}^{N}\partial_{x_j} \left(\gamma_j^2 \partial_{x_j} \right), \ \partial_{x_j}=\frac{\partial }{\partial x_{j}}, \gamma = (\gamma_1, \gamma_2, ..., \gamma_N), $$the nonlinearity $f(x , \xi)$ is subcritical growth and may be not satisfy the Ambrosetti-Rabinowitz (AR) condition. We establish the existence of three nontrivial solutions by using Morse theory.


2021 ◽  
pp. 1-21
Author(s):  
Heng Yang

In this paper, we prove the existence of nontrivial solutions and ground state solutions for the following planar Schrödinger–Poisson system with zero mass − Δ u + ϕ u = ( I α ∗ F ( u ) ) f ( u ) , x ∈ R 2 , Δ ϕ = u 2 , x ∈ R 2 , where α ∈ ( 0 , 2 ), I α : R 2 → R is the Riesz potential, f ∈ C ( R , R ) is of subcritical exponential growth in the sense of Trudinger–Moser. In particular, some new ideas and analytic technique are used to overcome the double difficulties caused by the zero mass case and logarithmic convolution potential.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Guanwei Chen ◽  
Shiwang Ma

We study a class of resonant cooperative elliptic systems and replace the Ambrosetti-Rabinowitz superlinear condition with general superlinear conditions. We obtain ground state solutions and infinitely many nontrivial solutions of this system by a generalized Nehari manifold method developed recently by Szulkin and Weth.


2019 ◽  
Vol 150 (4) ◽  
pp. 1915-1936 ◽  
Author(s):  
Pietro d'Avenia ◽  
Alessio Pomponio ◽  
Tatsuya Watanabe

AbstractWe are interested in standing waves of a modified Schrödinger equation coupled with the Chern–Simons gauge theory. By applying a constraint minimization of Nehari-Pohozaev type, we prove the existence of radial ground state solutions. We also investigate the nonexistence for nontrivial solutions.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Mohammad Ali Husaini ◽  
Chuangye Liu

<p style='text-indent:20px;'>In this paper, we study the following coupled nonlinear Schrödinger system of the form</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \left\{\begin{array}{l} -\Delta u_i-\kappa_iu_i = g_i(u_i)+\lambda\partial_iF(\vec{u}), \\ \vec{u} = (u_1,u_2,\cdots,u_m), u_i\in D_0^{1,2}(\Omega), \end{array}\right. $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>for <inline-formula><tex-math id="M1">\begin{document}$ m = 2,3 $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M2">\begin{document}$ \Omega\subset \mathbb{R}^N $\end{document}</tex-math></inline-formula> is a bounded domain or <inline-formula><tex-math id="M3">\begin{document}$ \mathbb{R}^N $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M4">\begin{document}$ N\geq 3 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M5">\begin{document}$ F(t_1,t_2\cdots,t_m)\in C^1(\mathbb{R}^m,\mathbb{R}) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M6">\begin{document}$ \kappa_i\in\mathbb{R} $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M7">\begin{document}$ g_i\in C(\mathbb{R}) \ (i = 1,2,\cdots,m) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M8">\begin{document}$ \lambda&gt;0 $\end{document}</tex-math></inline-formula> is large enough. In this work we mainly focus on the existence of fully nontrivial ground-state solutions and synchronized ground-state solutions under certain conditions.</p>


Sign in / Sign up

Export Citation Format

Share Document