Cell-free layer and wall shear stress variation in microvessels

Biorheology ◽  
2012 ◽  
Vol 49 (4) ◽  
pp. 261-270 ◽  
Author(s):  
Xuewen Yin ◽  
Junfeng Zhang
2010 ◽  
Vol 39 (1) ◽  
pp. 359-366 ◽  
Author(s):  
Bumseok Namgung ◽  
Peng Kai Ong ◽  
Paul C. Johnson ◽  
Sangho Kim

2009 ◽  
Vol 23 (S1) ◽  
Author(s):  
BumSeok Namgung ◽  
Peng Kai Ong ◽  
Paul C Johnson ◽  
Sangho Kim

2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Othmane Oulaid ◽  
Junfeng Zhang

Using a simplified two-dimensional divider-channel setup, we simulate the development process of red blood cell (RBC) flows in the entrance region of microvessels to study the wall shear stress (WSS) behaviors. Significant temporal and spatial variation in WSS is noticed. The maximum WSS magnitude and the strongest variation are observed at the channel inlet due to the close cell-wall contact. From the channel inlet, both the mean WSS and variation magnitude decrease, with a abrupt drop in the close vicinity near the inlet and then a slow relaxation over a relatively long distance; and a relative stable state with approximately constant mean and variation is established when the flow is well developed. The correlations between the WSS variation features and the cell free layer (CFL) structure are explored, and the effects of several hemodynamic parameters on the WSS variation are examined. In spite of the model limitations, the qualitative information revealed in this study could be useful for better understanding relevant processes and phenomena in the microcirculation.


2002 ◽  
Vol 57 (8) ◽  
pp. 1287-1297 ◽  
Author(s):  
Caroline Lelièvre ◽  
Patrick Legentilhomme ◽  
Cécile Gaucher ◽  
Jack Legrand ◽  
Christine Faille ◽  
...  

Author(s):  
Brett Freidkes ◽  
David A. Mills ◽  
Casey Keane ◽  
Lawrence S. Ukeiley ◽  
Mark Sheplak

Sign in / Sign up

Export Citation Format

Share Document