scholarly journals Effects of cell‐free layer width and its variability on wall shear stress in arterioles

2009 ◽  
Vol 23 (S1) ◽  
Author(s):  
BumSeok Namgung ◽  
Peng Kai Ong ◽  
Paul C Johnson ◽  
Sangho Kim
2010 ◽  
Vol 39 (1) ◽  
pp. 359-366 ◽  
Author(s):  
Bumseok Namgung ◽  
Peng Kai Ong ◽  
Paul C. Johnson ◽  
Sangho Kim

Biorheology ◽  
2012 ◽  
Vol 49 (4) ◽  
pp. 261-270 ◽  
Author(s):  
Xuewen Yin ◽  
Junfeng Zhang

2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Othmane Oulaid ◽  
Junfeng Zhang

Using a simplified two-dimensional divider-channel setup, we simulate the development process of red blood cell (RBC) flows in the entrance region of microvessels to study the wall shear stress (WSS) behaviors. Significant temporal and spatial variation in WSS is noticed. The maximum WSS magnitude and the strongest variation are observed at the channel inlet due to the close cell-wall contact. From the channel inlet, both the mean WSS and variation magnitude decrease, with a abrupt drop in the close vicinity near the inlet and then a slow relaxation over a relatively long distance; and a relative stable state with approximately constant mean and variation is established when the flow is well developed. The correlations between the WSS variation features and the cell free layer (CFL) structure are explored, and the effects of several hemodynamic parameters on the WSS variation are examined. In spite of the model limitations, the qualitative information revealed in this study could be useful for better understanding relevant processes and phenomena in the microcirculation.


Author(s):  
Brett Freidkes ◽  
David A. Mills ◽  
Casey Keane ◽  
Lawrence S. Ukeiley ◽  
Mark Sheplak

2020 ◽  
Vol 59 (SK) ◽  
pp. SKKE16 ◽  
Author(s):  
Ryo Nagaoka ◽  
Kazuma Ishikawa ◽  
Michiya Mozumi ◽  
Magnus Cinthio ◽  
Hideyuki Hasegawa

Sign in / Sign up

Export Citation Format

Share Document