The effect of cervical stabilization exercise on active joint position sense: A randomized controlled trial

2016 ◽  
Vol 29 (1) ◽  
pp. 85-88 ◽  
Author(s):  
Mi-Young Lee ◽  
Seong-Gil Kim ◽  
Hae-Yong Lee
2020 ◽  
Vol 29 (4) ◽  
pp. 488-497 ◽  
Author(s):  
Hiroshi Takasaki ◽  
Yu Okubo ◽  
Shun Okuyama

Context: Accurate joint position sense (JPS) is necessary for effective motor learning and high performance in activities that require fine motor control. Proprioceptive neuromuscular facilitation (PNF) can be a promising intervention. Objective: To examine existing peer-reviewed original studies that have investigated the effect of PNF techniques on the JPS in terms of the methodological quality, PNF techniques, outcomes, and participant characteristics. Evidence Acquisition: A systematic literature search was performed using PubMed, EMBASE, MEDLINE, CINAHL, SocINDEX, Scopus, and Cochrane Library from inception to January 2018. The following inclusion criteria were used: (1) assessment of the JPS; (2) peer-reviewed original studies with a randomized controlled trial or quasi-randomized controlled trial design; (3) participants with musculoskeletal disorders or healthy individuals (ie, neither animal studies nor those involving neurological problems); and (4) no cointervention with PNF, except for warm-up procedures. The methodological quality was assessed using PEDro scale and 5 additional criteria. Effect size (η2) was calculated where a positive value indicated an increased JPS after PNF as compared with other approaches including the wait-and-see method. Evidence Synthesis: Nine studies were examined for their methodological quality, and only one study scored >6 on the PEDro scale. Positive and large effect size (η2 > .14) was detected in 2 studies where JPS of the knee with contract-relax and replication techniques was assessed in healthy individuals. However, the methodological quality of these studies was poor (PEDro scores of 3 and ≤5 in the total quality score out of 16, respectively). Conclusions: The current study did not find multiple studies with high methodological quality and similar PNF techniques, outcomes, and characteristics of participants. More high-quality studies are required to achieve a comprehensive understanding of the effect of PNF on the JPS.


2021 ◽  
pp. 1-6
Author(s):  
Adam L. Haggerty ◽  
Janet E. Simon ◽  
Dustin R. Grooms ◽  
Jeffrey A. Russell

Context: Proprioception is an individual’s awareness of body position in 3-dimensional space. How proprioceptive acuity changes under varying conditions such as joint position, load, and concentric or eccentric contraction type is not well understood. In addition, a limitation of the variety of techniques to assess proprioception is the lack of clinically feasible methods to capture proprioceptive acuity. The purpose of this study was to implement a readily available instrument, a smartphone, in the clinical evaluation of knee active joint position sense and to determine how joint angle, joint loading, and quadriceps contraction type affect an individual’s active joint position sense. Design: Cross-over study. Methods: Twenty healthy, physically active university participants (10 women and 10 men: 21.4 [2.0] y; 1.73 [0.1] m; 70.9 [14.3] kg) were recruited. Individuals were included if they had no neurological disorder, no prior knee surgery, and no recent knee injury. The participants were given a verbal instruction to locate a target angle and then were tasked with reproducing the target angle without visual or verbal cues. An accelerometer application on a smartphone was used to assess the angle to the nearest tenth of a degree. Three variables, each with 2 levels, were analyzed in this study: load (weighted and unweighted), contraction type (eccentric and concentric), and joint position (20° and 70°). A repeated-measures analysis of variance was conducted to assess the within-subjects factors of load, contraction, and position. Results: A significant difference of 0.50° (0.19°) of greater error with eccentric versus concentric contraction (P = .02) type was identified. In addition, a significant interaction was found for contraction × position, with a mean increase in error of 0.98° (0.33°) at the 20° position when contracting eccentrically (P = .03). Conclusions: Contraction type, specifically eccentric contraction at 20°, showed significantly greater error than concentric contraction. This suggests that, during eccentric contractions of the quadriceps, there may be decreased proprioceptive sensitivity compared with concentric contractions.


Sign in / Sign up

Export Citation Format

Share Document