target angle
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 20)

H-INDEX

9
(FIVE YEARS 0)

2022 ◽  
Vol 11 (2) ◽  
pp. 287
Author(s):  
Chih-Kang Hsu ◽  
Meng-Wei Hsieh ◽  
Hsu-Chieh Chang ◽  
Yi-Hao Chen ◽  
Ke-Hung Chien

Surgery for strabismus secondary to orbital fracture reconstruction surgery has had low success rates and high reoperation rates due to its incomitant nature and complex underlying mechanisms. There has been no consensus as to which of the various methods for improving the surgical results are best. We proposed a modified target angle criteria that combined the regular target angle and a favorable Hess area ratio percentage (HAR%) threshold to evaluate surgical results within the first postoperative week and conducted a retrospective chart review. According to the criteria of the modified target angle at the first postoperative week, a total of 63 patients were divided into two groups: Group 1, patients who fulfilled the criteria (49 patients); and Group 2, those who did not (14 patients). Sex, type of fracture, and the use of porous polyethylene sheets and titanium mesh during reconstruction surgery were significantly different between the groups. Group 1 showed a significantly higher percentage of patients who met the criteria of HAR% > 65% at the first week and >85% (i.e., a successful outcome) at the 6-month visit (p < 0.01). Additionally, Group 1 had a higher HAR% at the first postoperative week (p < 0.01). In conclusion, the patients meeting the criteria of the modified target angle at the first postoperative week had a favorable outcome at the 6-month visit in both ocular alignment and ocular movement.


2021 ◽  
Vol 28 (12) ◽  
pp. 123515
Author(s):  
Haider M. Al-Juboori ◽  
Nadeem Ahmed Malik ◽  
Tom McCormack
Keyword(s):  

Author(s):  
Dang Trung ◽  
Nguyen Tuan ◽  
Nguyen Bang ◽  
Tran Tuyen

On the basis of the tracking multi-loop target angle coordinate system, the article has selected and proposed a interactive multi-model adaptive filter algorithm to improve the quality of the target phase coordinate filter. In which, the 3 models selected to design the line of sight angle coordinate filter; Constant velocity (CV) model, Singer model and constant acceleration model, characterizing 3 different levels of maneuverability of the target. As a result, the evaluation quality of the target phase coordinates is improved because the evaluation process has redistribution of the probabilities of each model to suit the actual maneuvering of the target. The structure of the filters is simple, the evaluation error is small and the maneuvering detection delay is significantly reduced. The results are verified through simulation, ensuring that in all cases the target is maneuvering with different intensity and frequency, the line of sight angle coordinate filter always accurately determines the target angle coordinates.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256561
Author(s):  
Yuki Nakashima ◽  
Daisuke Iwaki ◽  
Toshihiro Kawae ◽  
Kenichi Fudeyasu ◽  
Hiroaki Kimura

An impaired joint position sense (JPS) causes activity limitations, postural imbalance, and falls. This study compares the reliability of knee JPS measurements between the iPhone’s “Measure” application and VICON motion capture system. Eleven healthy participants were recruited for the study. To conduct the study measures, the blindfolded participant, with an iPhone fixed to the lower non-dominant leg, was seated with their lower limbs in a relaxed position. The examiner held the participant’s leg at the target angle (30°/60° from initial position) for 5 s before releasing it. The participant was then instructed to move the leg to the same target angle and hold it for 5 s (replicated angle). Absolute angular error (AAE), i.e., the difference between the target and replicated angles, was measured. Intraclass and Pearson correlation coefficients established statistically significant relationships. The study comprised 6 males and 5 females of mean age 27.6±5.6 years, mean height 1.67±0.10 m, and mean body weight 60.7±10.3 kg. Strong correlations existed between iPhone and VICON 30° (ICC = 0.969, r = 0.960, P < 0.001) and 60° AAEs (ICC 0.969, r = 0.960, P < 0.001). Bland-Altman plots showed a mean difference of 0.43° and 0.20° between the AAE measurements at 30° and 60°, respectively. The iPhone’s “Measure” application is a simple and reliable method for measuring JPS in clinical practice and sports/fitness settings.


2021 ◽  
Vol 73 (07) ◽  
pp. 18-21
Author(s):  
Stephen Rassenfoss

Want more production from a shale well? Consider lining up the perforations. A handful of speakers at the recent SPE Hydraulic Fracturing Technology Conference talked about improved fracturing results with oriented perforating—shooting the holes at the same place in the casing, often the top. This breaks from designs that arranged the holes in a helical pattern with each charge angled 60° from the previous one. “We did see indications we are getting better production from oriented perforating,” said Blake Horton, senior completions engineer for Ovintiv (SPE 204177). Production gains were also reported by ConocoPhillips which compared production from similar wells with and without oriented perforating. The analysis was designed to filter out differences in the geology, drilling, and completions. It concluded the value of the added production far exceeded the $20,000-per-well cost of installing the assembly, including a weight bar to tilt the perforating guns into position. “That’s less than the undiscounted value of 400 barrels of oil. An internal study indicated that ConocoPhillips improved estimated ultimate recovery (EUR) by a minimum of 5% when using high-side-oriented perforating,” said Dave Cramer, senior engineering fellow at ConocoPhillips and an early advocate for the method. “For an initial choked flow rate of 1,000 B/D, the payout on investment is 10 days or less,” he said. Ovintiv declined to provide a number, but Horton said ConocoPhillips’ estimate is within Ovintiv’s range based on similar comparisons of wells with and without oriented perforating. That number is at the low end of the estimates offered in discussions about oriented perforating performance at the conference. Higher estimates are questioned by those who doubt the test results can be sustained when the method is scaled up. What was certain is the number of users is rising and includes names such as Shell and Chevron. “We found that oriented perforating definitely helps to treat all the clusters,” said Jon Snyder, a staff completion engineer for ConocoPhillips who presented the paper, adding, “by oriented perforating we mean that when we are perforating, we aim for the high side of the wellbore” (SPE 204203). When Horton polled the audience at a recent talk, more than half of the respondents said they were using gun systems designed to orient the perforating charges at a target angle. “A year from now, few people will not be doing oriented perforating; the advantages of it are clear,” Cramer said. He has been promoting the idea within the company for years with mixed acceptance.


2021 ◽  
pp. 219256822199837
Author(s):  
Juan Pablo Sardi ◽  
Christopher P. Ames ◽  
Skye Coffey ◽  
Christopher Good ◽  
Benny Dahl ◽  
...  

Study Design: Biomechanical Study. Objective: The search for optimal spinal alignment has led to the development of sophisticated formulas and software for preoperative planning. However, preoperative plans are not always appropriately executed since rod contouring during surgery is often subjective and estimated by the surgeon. We aimed to assess whether rods contoured to specific angles with a French rod bender using a template guide will be more accurate than rods contoured without a template. Methods: Ten experienced spine surgeons were requested to contour two 125 × 5.5 mm Ti64 rods to 40°, 60° and 80° without templates and then 2 more rods using 2D metallic templates with the same angles. Rod angles were then measured for accuracy and compared. Results: Average angles for rods bent without a template to 40°, 60° and 80° were 60.2°, 78.9° and 97.5°, respectively. Without a template, rods were overbent by a mean of 18.9°. When using templates of 40°, 60° and 80°, mean bend angles were 41.5°, 59.1° and 78.7°, respectively, with an average underbend of 0.2°. Differences between the template and non-template groups for each target angle were all significant (p < 0.001). Conclusions: Without the template, surgeons tend to overbend rods compared to the desired angle, while surgeons improved markedly with a template guide. This tendency to overbend could have significant impact on patient outcomes and risk of proximal junctional failure and warrants further research to better enable surgeons to more accurately execute preoperative alignment plans.


2021 ◽  
Vol 5 (1) ◽  
pp. 3
Author(s):  
Sevilay Tufenkci ◽  
Bilal Senol ◽  
Radek Matušů ◽  
Baris Baykant Alagoz

Robust stability is a major concern for real-world control applications. Realization of optimal robust stability requires a stabilization scheme, which ensures that the control system is stable and presents robust performance for a predefined range of system perturbations. This study presented an optimal robust stabilization approach for closed-loop fractional order proportional integral derivative (FOPID) control systems with interval parametric uncertainty and uncertain time delay. This stabilization approach, which is carried out in a v-plane, relies on the placement of the minimum angle system pole to a predefined target angle within the stability region of the first Riemann sheet. For this purpose, tuning of FOPID controller coefficients was performed to minimize a root angle error that is defined as the squared difference of minimum angle root of interval characteristic polynomials and the desired target angle within the stability region of the v-plane. To solve this optimization problem, a particle swarm optimization (PSO) algorithm was implemented. Findings of the study reveal that tuning of the target angle can also be used to improve the robust control performance of interval uncertain FOPID control systems. Illustrative examples demonstrated the effectiveness of the proposed v-domain, optimal, robust stabilization of FOPID control systems.


2021 ◽  
pp. 1-6
Author(s):  
Adam L. Haggerty ◽  
Janet E. Simon ◽  
Dustin R. Grooms ◽  
Jeffrey A. Russell

Context: Proprioception is an individual’s awareness of body position in 3-dimensional space. How proprioceptive acuity changes under varying conditions such as joint position, load, and concentric or eccentric contraction type is not well understood. In addition, a limitation of the variety of techniques to assess proprioception is the lack of clinically feasible methods to capture proprioceptive acuity. The purpose of this study was to implement a readily available instrument, a smartphone, in the clinical evaluation of knee active joint position sense and to determine how joint angle, joint loading, and quadriceps contraction type affect an individual’s active joint position sense. Design: Cross-over study. Methods: Twenty healthy, physically active university participants (10 women and 10 men: 21.4 [2.0] y; 1.73 [0.1] m; 70.9 [14.3] kg) were recruited. Individuals were included if they had no neurological disorder, no prior knee surgery, and no recent knee injury. The participants were given a verbal instruction to locate a target angle and then were tasked with reproducing the target angle without visual or verbal cues. An accelerometer application on a smartphone was used to assess the angle to the nearest tenth of a degree. Three variables, each with 2 levels, were analyzed in this study: load (weighted and unweighted), contraction type (eccentric and concentric), and joint position (20° and 70°). A repeated-measures analysis of variance was conducted to assess the within-subjects factors of load, contraction, and position. Results: A significant difference of 0.50° (0.19°) of greater error with eccentric versus concentric contraction (P = .02) type was identified. In addition, a significant interaction was found for contraction × position, with a mean increase in error of 0.98° (0.33°) at the 20° position when contracting eccentrically (P = .03). Conclusions: Contraction type, specifically eccentric contraction at 20°, showed significantly greater error than concentric contraction. This suggests that, during eccentric contractions of the quadriceps, there may be decreased proprioceptive sensitivity compared with concentric contractions.


Sign in / Sign up

Export Citation Format

Share Document