scholarly journals Detection for All Zero Coefficient Blocks in HEVC Based on Uniform Quantizer

2021 ◽  
Author(s):  
Nana Shan ◽  
Henglu Wei ◽  
Wei Zhou ◽  
Zhemin Duan

Transform and quantization are adopted in HEVC. There are lots of all zero coefficient blocks in transform and quantization. By detecting all zero coefficient blocks, the complexity of transform or quantization can be greatly reduced. All zero coefficient blocks for uniform quantizer can be efficiently detected by comparing the float quantization level of the estimated coefficients with an explicit threshold. The experimental result shows that 50% complexity of transform or quantization for uniform quantizer can be reduced with negligible loss of video coding efficiency.

Author(s):  
Iraide Unanue ◽  
Inigo Urteaga ◽  
Ronaldo Husemann ◽  
Javier Del ◽  
Valter Roesler ◽  
...  

2020 ◽  
Vol 34 (07) ◽  
pp. 11580-11587
Author(s):  
Haojie Liu ◽  
Han Shen ◽  
Lichao Huang ◽  
Ming Lu ◽  
Tong Chen ◽  
...  

Traditional video compression technologies have been developed over decades in pursuit of higher coding efficiency. Efficient temporal information representation plays a key role in video coding. Thus, in this paper, we propose to exploit the temporal correlation using both first-order optical flow and second-order flow prediction. We suggest an one-stage learning approach to encapsulate flow as quantized features from consecutive frames which is then entropy coded with adaptive contexts conditioned on joint spatial-temporal priors to exploit second-order correlations. Joint priors are embedded in autoregressive spatial neighbors, co-located hyper elements and temporal neighbors using ConvLSTM recurrently. We evaluate our approach for the low-delay scenario with High-Efficiency Video Coding (H.265/HEVC), H.264/AVC and another learned video compression method, following the common test settings. Our work offers the state-of-the-art performance, with consistent gains across all popular test sequences.


2014 ◽  
Vol 687-691 ◽  
pp. 4097-4100
Author(s):  
Shun Xing Hu ◽  
Hong Tao Zhang

the temporal correlation exists between the frame and the frame in a video message, in order to solve temporal redundancy.This paper adopts motion-compensated temporal filtering method for removing temporal correlation, motion-compensated temporal filtering and Haar wavelet lifting techniques are studied and discussed; finally presented the improved motion compensated temporal filtering methods. Results show the new method improves coding efficiency and scalability.


2019 ◽  
Vol 15 (12) ◽  
pp. 155014771989256
Author(s):  
Hong-rae Lee ◽  
Eun-bin Ahn ◽  
A-young Kim ◽  
Kwang-deok Seo

Recently, as demand for high-quality video and realistic media has increased, High Efficiency Video Coding has been standardized. However, High Efficiency Video Coding requires heavy cost in terms of computational complexity to achieve high coding efficiency, which causes problems in fast coding processing and real-time processing. In particular, High Efficiency Video Coding inter-coding has heavy computational complexity, and the High Efficiency Video Coding inter prediction uses reference pictures to improve coding efficiency. The reference pictures are typically signaled in two independent lists according to the display order, to be used for forward and backward prediction. If an event occurs in the input video, such as a scene change, the inter prediction performs unnecessary computations. Therefore, the reference picture list should be reconfigured to improve the inter prediction performance and reduce computational complexity. To address this problem, this article proposes a method to reduce computational complexity for fast High Efficiency Video Coding encoding using information such as scene changes obtained from the input video through preprocessing. Furthermore, reference picture lists are reconstructed by sorting the reference pictures by similarity to the current coded picture using Angular Second Moment, Contrast, Entropy, and Correlation, which are image texture parameters from the input video. Simulations are used to show that both the encoding time and coding efficiency could be improved simultaneously by applying the proposed algorithms.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1405 ◽  
Author(s):  
Riccardo Peloso ◽  
Maurizio Capra ◽  
Luigi Sole ◽  
Massimo Ruo Roch ◽  
Guido Masera ◽  
...  

In the last years, the need for new efficient video compression methods grown rapidly as frame resolution has increased dramatically. The Joint Collaborative Team on Video Coding (JCT-VC) effort produced in 2013 the H.265/High Efficiency Video Coding (HEVC) standard, which represents the state of the art in video coding standards. Nevertheless, in the last years, new algorithms and techniques to improve coding efficiency have been proposed. One promising approach relies on embedding direction capabilities into the transform stage. Recently, the Steerable Discrete Cosine Transform (SDCT) has been proposed to exploit directional DCT using a basis having different orientation angles. The SDCT leads to a sparser representation, which translates to improved coding efficiency. Preliminary results show that the SDCT can be embedded into the HEVC standard, providing better compression ratios. This paper presents a hardware architecture for the SDCT, which is able to work at a frequency of 188 M Hz , reaching a throughput of 3.00 GSample/s. In particular, this architecture supports 8k UltraHigh Definition (UHD) (7680 × 4320) with a frame rate of 60 Hz , which is one of the best resolutions supported by HEVC.


2020 ◽  
Vol 10 (2) ◽  
pp. 496-501
Author(s):  
Wen Si ◽  
Qian Zhang ◽  
Zhengcheng Shi ◽  
Bin Wang ◽  
Tao Yan ◽  
...  

High Efficiency Video Coding (HEVC) is the next generation video coding standard. In HEVC, 35 intra prediction modes are defined to improve coding efficiency, which result in huge computational complexity, as a large number of prediction modes and a flexible coding unit (CU) structure is adopted in CU coding. To reduce this computational burden, this paper presents a gradient-based candidate list clipping algorithm for Intra mode prediction. Experimental results show that the proposed algorithm can reduce 29.16% total encoding time with just 1.34% BD-rate increase and –0.07 dB decrease of BD-PSNR.


Sign in / Sign up

Export Citation Format

Share Document