Certificate-based Fair Exchange Protocol of Schnorr Signatures in Chosen-key Model

2015 ◽  
Vol 141 (1) ◽  
pp. 95-114
Author(s):  
Zuhua Shao ◽  
Yipeng Gao
2021 ◽  
Vol 21 (2) ◽  
pp. 1-27
Author(s):  
Michał Król ◽  
Alberto Sonnino ◽  
Mustafa Al-Bassam ◽  
Argyrios G. Tasiopoulos ◽  
Etienne Rivière ◽  
...  

As cryptographic tokens and altcoins are increasingly being built to serve as utility tokens, the notion of useful work consensus protocols is becoming ever more important. With useful work consensus protocols, users get rewards after they have carried out some specific tasks useful for the network. While in some cases the proof of some utility or service can be provided, the majority of tasks are impossible to verify reliably. To deal with such cases, we design “Proof-of-Prestige” (PoP)—a reward system that can run directly on Proof-of-Stake (PoS) blockchains or as a smart contract on top of Proof-of-Work (PoW) blockchains. PoP introduces “prestige,” which is a volatile resource that, in contrast to coins, regenerates over time. Prestige can be gained by performing useful work, spent when benefiting from services, and directly translates to users minting power. Our scheme allows us to reliably reward decentralized workers while keeping the system free for the end-users. PoP is resistant against Sybil and collusion attacks and can be used with a vast range of unverifiable tasks. We build a simulator to assess the cryptoeconomic behavior of the system and deploy a full prototype of a content dissemination platform rewarding its participants. We implement the blockchain component on both Ethereum (PoW) and Cosmos (PoS), provide a mobile application, and connect it with our scheme with a negligible memory footprint. Finally, we adapt a fair exchange protocol allowing us to atomically exchange files for rewards also in scenarios where not all the parties have Internet connectivity. Our evaluation shows that even for large Ethereum traces, PoP introduces sub-millisecond computational overhead for miners in Cosmos and less than 0.013$ smart contract invocation cost for users in Ethereum.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1330
Author(s):  
Jason Chia ◽  
Ji-Jian Chin ◽  
Sook-Chin Yip

The security of cryptographic schemes is proven secure by reducing an attacker which breaks the scheme to an algorithm that could be used to solve the underlying hard assumption (e.g., Discrete Logarithm, Decisional Diffie–Hellman). The reduction is considered tight if it results in approximately similar probability bounds to that of solving the underlying hard assumption. Tight security is desirable as it improves security guarantees and allows the use of shorter parameters without the risk of compromising security. In this work, we propose an identity-based identification (IBI) scheme with tight security based on a variant of the Schnorr signature scheme known as TNC signatures. The proposed IBI scheme enjoys shorter parameters and key sizes as compared to existing IBI schemes without increasing the number of operations required for its identification protocol. Our scheme is suitable to be used for lightweight authentication in resource-constrained Wireless Sensor Networks (WSNs) as it utilizes the lowest amount of bandwidth when compared to other state-of-the-art symmetric key lightweight authentication schemes. Although it is costlier than its symmetric key counterparts in terms of operational costs due to its asymmetric key nature, it enjoys other benefits such as decentralized authentication and scalable key management. As a proof of concept to substantiate our claims, we perform an implementation of our scheme to demonstrate its speed and memory usage when it runs on both high and low-end devices.


2011 ◽  
Vol 181 (16) ◽  
pp. 3267-3283 ◽  
Author(s):  
Qiong Huang ◽  
Duncan S. Wong ◽  
Willy Susilo
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document