Local modelling approach for cross-project defect prediction

2021 ◽  
pp. 1-15
Author(s):  
Nayeem Ahmad Bhat ◽  
Sheikh Umar Farooq

Prediction approaches used for cross-project defect prediction (CPDP) are usually impractical because of high false alarms, or low detection rate. Instance based data filter techniques that improve the CPDP performance are time-consuming and each time a new test set arrives for prediction the entire filter procedure is repeated. We propose to use local modeling approach for the utilization of ever-increasing cross-project data for CPDP. We cluster the cross-project data, train per cluster prediction models and predict the target test instances using corresponding cluster models. Over 7 NASA Data sets performance comparison using statistical methods between within-project, cross-project, and our local modeling approach were performed. Compared to within-project prediction the cross-project prediction increased the probability of detection (PD) associated with an increase in the probability of false alarm (PF) and decreased overall performance Balance. The application of local modeling decreased the (PF) associated with a decrease in (PD) and an overall performance improvement in terms of Balance. Moreover, compared to one state of the art filter technique – Burak filter, our approach is simple, fast, performance comparable, and opens a new perspective for the utilization of ever-increasing cross-project data for defect prediction. Therefore, when insufficient within-project data is available we recommend training local cluster models than training a single global model on cross-project datasets.

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7535
Author(s):  
Haoyu Luo ◽  
Heng Dai ◽  
Weiqiang Peng ◽  
Wenhua Hu ◽  
Fuyang Li

Ranking-oriented cross-project defect prediction (ROCPDP), which ranks software modules of a new target industrial project based on the predicted defect number or density, has been suggested in the literature. A major concern of ROCPDP is the distribution difference between the source project (aka. within-project) data and target project (aka. cross-project) data, which evidently degrades prediction performance. To investigate the impacts of training data selection methods on the performances of ROCPDP models, we examined the practical effects of nine training data selection methods, including a global filter, which does not filter out any cross-project data. Additionally, the prediction performances of ROCPDP models trained on the filtered cross-project data using the training data selection methods were compared with those of ranking-oriented within-project defect prediction (ROWPDP) models trained on sufficient and limited within-project data. Eleven available defect datasets from the industrial projects were considered and evaluated using two ranking performance measures, i.e., FPA and Norm(Popt). The results showed no statistically significant differences among these nine training data selection methods in terms of FPA and Norm(Popt). The performances of ROCPDP models trained on filtered cross-project data were not comparable with those of ROWPDP models trained on sufficient historical within-project data. However, ROCPDP models trained on filtered cross-project data achieved better performance values than ROWPDP models trained on limited historical within-project data. Therefore, we recommended that software quality teams exploit other project datasets to perform ROCPDP when there is no or limited within-project data.


2020 ◽  
Author(s):  
Sonali Srivastava ◽  
Shikha Rani ◽  
Shailly Singh ◽  
Saurabh Singh ◽  
Rohit Vashisht

2021 ◽  
Author(s):  
Bruno Sotto-Mayor ◽  
Meir Kalech

Sign in / Sign up

Export Citation Format

Share Document