scholarly journals Combined ionic direct current and pulse frequency modulation improves the dynamic range of vestibular canal stimulation

2019 ◽  
Vol 29 (2-3) ◽  
pp. 89-96 ◽  
Author(s):  
F.P. Aplin ◽  
D. Singh ◽  
C.C. Della Santina ◽  
G.Y. Fridman
2021 ◽  
Author(s):  
Yong Chen

This thesis deals with the designing of CMOS image sensors with in-pixel analog-to-digital conversion. A 2-stage memory write scheme for Pulse-Width-Modulation digital pixel sensors is proposed. It utilizes the characteristics of Gray-code counters and partitions a single data write operation into two separated write operations such that the size of the in-pixel memory can be significantly reduced. A Pulse-Frequency-Modulation pixel significantly reduces the integration time without sacrificing the dynamic range. Finally, a Pulse-Frequency-Modulation Digital Pixel Sensor with an in-pixel variable reference voltage is proposed. As compared with conventional Pulse-Frequency-Modulation pixels, the proposed architecture improves the dynamic range by adaptively adjusting the reference voltage in the pixel. All proposed digital pixel sensors are designed in TSMC-0.18μm 6-Metal 1-Poly 1.8 V CMOS technology and analyzed using Spectre from Cadence Design Systems with BSIM3V3 device models. The effectiveness of the proposed digital pixel sensors is validated using simultation.


2021 ◽  
Author(s):  
Yong Chen

This thesis deals with the designing of CMOS image sensors with in-pixel analog-to-digital conversion. A 2-stage memory write scheme for Pulse-Width-Modulation digital pixel sensors is proposed. It utilizes the characteristics of Gray-code counters and partitions a single data write operation into two separated write operations such that the size of the in-pixel memory can be significantly reduced. A Pulse-Frequency-Modulation pixel significantly reduces the integration time without sacrificing the dynamic range. Finally, a Pulse-Frequency-Modulation Digital Pixel Sensor with an in-pixel variable reference voltage is proposed. As compared with conventional Pulse-Frequency-Modulation pixels, the proposed architecture improves the dynamic range by adaptively adjusting the reference voltage in the pixel. All proposed digital pixel sensors are designed in TSMC-0.18μm 6-Metal 1-Poly 1.8 V CMOS technology and analyzed using Spectre from Cadence Design Systems with BSIM3V3 device models. The effectiveness of the proposed digital pixel sensors is validated using simultation.


2014 ◽  
Vol E97.C (3) ◽  
pp. 194-197 ◽  
Author(s):  
Yoshitaka TAKAHASHI ◽  
Hiroshi SHIMADA ◽  
Masaaki MAEZAWA ◽  
Yoshinao MIZUGAKI

Sign in / Sign up

Export Citation Format

Share Document