scholarly journals Thermodynamic simulation of silicothermal process of nickel and iron reduction from oxides

Author(s):  
V. A. Salina ◽  
V. I. Zhuchkov ◽  
O. V. Zayakin
2020 ◽  
Vol 989 ◽  
pp. 511-516
Author(s):  
V.A. Salina ◽  
Vladimir I. Zhuchkov ◽  
Oleg V. Zayakin

The results of studying the effect of silicon concentration of ferrosilicon: FeSi5 (5% Si), FeSi20 (20% Si), FeSi35 (35% Si), FeSi50 (50% Si), FeSi65 (65% Si) on the degree of nickel (ηNi) and iron (ηFe) reduction of the CaO-SiO2-MgO-Al2O3-FeO-NiO-P2O5 multicomponent oxide system at a temperature of 1500 °C by thermodynamic simulation are given2. The HSC Chemistry 6.12 software package developed by Outokumpu (Finland) was used for the simulation. The chemical compounds Ni3Si and Ni5Si2 with the corresponding thermodynamic characteristics are entered into the database. The calculations were performed by the “Equilibrium Compositions” subroutine at a gas pressure of 1 atm, containing 2.24 m3 N2, as a neutral additive. The obtained modeling results indicate the thermodynamic possibility of nickel and iron reduction from the CaO-SiO2-MgO-Al2O3-FeO-NiO-P2O5 oxide system by silicon of ferrosilicon. The degree of iron reduction increases from 88.8 to 91.4%, with an increase in the silicon concentration of ferrosilicon [Si]FeSi from 5 to 65%. The degree of nickel reduction with an increase in the silicon concentration of ferrosilicon remains almost unchanged and amounts to 99.8-99.7%. The degree of use of silicon is 92.1–94.5%. The chemical composition of the complex alloy – ferrosiliconickel is determined. The obtained simulation results can be used to develop the technology for producing ferrosiliconickel from nickel ore by silicothermic method.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (10) ◽  
pp. 595-602
Author(s):  
ALISHA GIGLIO ◽  
VLADIMIROS G. PAPANGELAKIS ◽  
HONGHI TRAN

The formation of hard calcite (CaCO3) scale in green liquor handling systems is a persistent problem in many kraft pulp mills. CaCO3 precipitates when its concentration in the green liquor exceeds its solubility. While the solubility of CaCO3 in water is well known, it is not so in the highly alkaline green liquor environment. A systematic study was conducted to determine the solubility of CaCO3 in green liquor as a function of temperature, total titratable alkali (TTA), causticity, and sulfidity. The results show that the solubility increases with increased temperature, increased TTA, decreased causticity, and decreased sulfidity. The new solubility data was incorporated into OLI (a thermodynamic simulation program for aqueous salt systems) to generate a series of CaCO3 solubility curves for various green liquor conditions. The results help explain how calcite scale forms in green liquor handling systems.


Author(s):  
R.P. Merchan ◽  
M.J. Santos ◽  
A. Medina ◽  
A. Calvo

Sign in / Sign up

Export Citation Format

Share Document