mineral precipitation
Recently Published Documents


TOTAL DOCUMENTS

224
(FIVE YEARS 69)

H-INDEX

31
(FIVE YEARS 5)

2022 ◽  
Vol 3 ◽  
Author(s):  
Vitalii Starchenko

A fundamental understanding of mineral precipitation kinetics relies largely on microscopic observations of the dynamics of mineral surfaces exposed to supersaturated solutions. Deconvolution of tightly bound transport, surface reaction, and crystal nucleation phenomena still remains one of the main challenges. Particularly, the influence of these processes on texture and morphology of mineral precipitate remains unclear. This study presents a coupling of pore-scale reactive transport modeling with the Arbitrary Lagrangian-Eulerian approach for tracking evolution of explicit solid interface during mineral precipitation. It incorporates a heterogeneous nucleation mechanism according to Classical Nucleation Theory which can be turned “on” or “off.” This approach allows us to demonstrate the role of nucleation on precipitate texture with a focus at micrometer scale. In this work precipitate formation is modeled on a 10 micrometer radius particle in reactive flow. The evolution of explicit interface accounts for the surface curvature which is crucial at this scale in the regime of emerging instabilities. The results illustrate how the surface reaction and reactive fluid flow affect the shape of precipitate on a solid particle. It is shown that nucleation promotes the formation of irregularly shaped precipitate and diminishes the effect of the flow on the asymmetry of precipitation around the particle. The observed differences in precipitate structure are expected to be an important benchmark for reaction-driven precipitation in natural environments.


Author(s):  
Qianwen Liu ◽  
Brina Montoya

Microbially induced carbonate precipitation (MICP) is a sustainable biological process that catalyzes carbonate mineral precipitation within geomaterials. This study evaluates the performance and mechanisms of the MICP treatment for flocculating the oil sands fine tailings (FT). Column tests showed that the untreated FT did not decant during the 31 days. However, the MICP technique shortened the dewatering process. To elucidate the mechanisms of the MICP-induced flocculation of the FT, the diffuse double layer (DDL) thickness and microstructure of the specimens were evaluated. Three chemical equilibrium scenarios that gradually considered the MICP-biochemical reactions were explored to analyze the change of the DDL thickness. The results showed that increasing of ionic strength by urea hydrolysis decreased the DDL thickness. The fabric observation indicated that the specimens with the most calcium carbonate precipitation had the densest fabric. In summary, the MICP technique densified the fabric of FT via ureolysis process and precipitating minerals.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7507
Author(s):  
Timotheus K. T. Wolterbeek ◽  
Suzanne J. T. Hangx

Achieving zonal isolation along wellbores is essential for upholding the containment integrity of subsurface reservoirs and preventing fluid seepage to the environment. The sealing performance of Portland cements conventionally used to create barriers can be severely compromised by defects like fractures or micro-annuli along casing–cement–rock interfaces. A possible remediation method would be to circulate reactive fluids through compromised cement sections and induce defect clogging via mineral precipitation. We assess the sealing potential of two prospective fluids: sodium bicarbonate and sodium silicate solutions. Reactive flow-through experiments were conducted on 6-m-long cemented steel tubes, bearing ~20-μm-wide micro-annuli, at 50 °C and 0.3–6 MPa fluid pressure. For the sodium bicarbonate solution (90 g/kg-H2O), reactive flow yielded only a minor reduction in permeability, with values remaining within one order. Injection of sodium silicate solution (37.1 wt.%, SiO2:Na2O molar ratio M= 2.57) resulted in a large decrease in flow rate, effectively reaching the setup’s lower measurement limit in hours. However, this strong sealing effect can almost certainly be attributed to gelation of the fluid through polymerisation, rather than defect clogging via mineral precipitation. For both fluids investigated, the extent of solids precipitation resulting from single-phase injection was less than anticipated. This shortfall is attributed to ineffective/insufficient liberation of Ca-ions from the alkaline phases in the cement.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1212
Author(s):  
Pei Chen ◽  
Meiyan Fu ◽  
Hucheng Deng ◽  
Wang Xu ◽  
Dong Wu ◽  
...  

The hydrothermal fluid–carbonate rock reaction is frequently regarded to occur in deep-burial diagenesis, and the hydrothermal dissolution is usually distributed and takes place along the faults. Previous studies have suggested that there was hydrothermal fluid activity locally in the Permian Qixia Formation in Sichuan Basin, likely related to the Emeishan basalt eruption. However, the effect of hydrothermal fluids on the carbonate rocks of the Qixia Formation in the central uplift of Sichuan Basin is still unclear. Based on the characteristics and geochemical parameters of the diagenetic minerals, this study aims to reveal the diagenetic alteration related to the hydrothermal fluid–rock reaction in the Qixia Formation and reestablish the diagenetic evolution by using the timing of diagenetic mineral precipitation. The methods include petrographic observation; trace and rare earth element (REE) analysis; C, O and Sr isotope measurement; fluid inclusion temperature measurement and cathodoluminescence analysis. According to the petrographic characteristics, the dolostones are mainly of crystalline structure, namely fine-medium crystalline dolostone, meso-coarse crystalline dolostone, and coarse crystalline dolostone, with the cathodoluminescence color becoming brighter in that order. The limestones from the Qixia Formation are of the bioclastic limestone type, with no cathodoluminescence color. Compared with dolostones, limestones have higher Sr content, lower Mn content, and heavier oxygen isotopes. With the crystalline size of dolostone becoming coarser, the oxygen isotopes of dolostones tend to become lighter. The meso-coarse crystalline dolostone has the highest Mn content and negative carbon isotope. Both limestones and dolostones have an obvious positive Eu anomaly in the Qixia Formation. However, the REE patterns of fine-medium crystalline dolostones are very different from those of meso-coarse crystalline dolostone. It is credible that there were two periods of hydrothermal fluid charging, with different chemical compositions. The first period of hydrothermal fluids could laterally migrate along the sequence boundary. Fine-medium crystalline dolostones were almost completely distributed below the sequence boundary and were dolomitized during the shallow burial period. As products of the hydrothermal fluid–dolostone reaction, the saddle-shaped dolomites in the meso-coarse crystalline dolostones were the evidence of the second period of hydrothermal fluids. As a result, the dolomitization model was established according to the timing of diagenetic mineral precipitation, which can improve the geological understanding of the effect of hydrothermal fluid activities on the carbonate rocks in the Qixia Formation.


2021 ◽  
Author(s):  
Xinyue Su ◽  
Yan Chen ◽  
Yanfei Li ◽  
Jing Li ◽  
Wen Song ◽  
...  

Abstract To explore the heavy metal adsorption mechanisms by biochar-based materials, MgAl-layered double hydroxide (MgAl-LDH) was loaded on a commercial coconut shell biochar (BC) to obtain the composite (BC-LDH) for adsorptive decontamination of Pb(II) and Cu(II) in water. The removal capacities of BC-LDH (294 and 38.6 mg/g) was higher than BC (13.3 and 11.4 mg/g) and LDH (126 and 22.7 mg/g) for aqueous Pb(II) and Cu(II). The pseudo-second-order equation and the Langmuir model could better illustrate the adsorption process, respectively. The interaction mechanisms between BC-LDH and heavy metals were classified as mineral precipitation (Qpre), cation exchange and isomorphic replacement (Qexc), electrostatic attraction (Qele), and surface complexation (Qcom) according to the characterization results. The quantitative analysis indicated that the contributions of the above mechanisms of BC-LDH for Pb(II) and Cu(II) followed the order of Qpre > Qele > Qexc and Qpre > Qexc > Qele, respectively. Compared with BC, the Qpre increased and Qele decreased significantly, certified the combination of BC and LDH provided a kind of viable composite in heavy metal wastewater treatment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Nooraiepour ◽  
Mohammad Masoudi ◽  
Helge Hellevang

AbstractOne important unresolved question in reactive transport is how pore-scale processes can be upscaled and how predictions can be made on the mutual effect of chemical processes and fluid flow in the porous medium. It is paramount to predict the location of mineral precipitation besides their amount for understanding the fate of transport properties. However, current models and simulation approaches fail to predict precisely where crystals will nucleate and grow in the spatiotemporal domain. We present a new mathematical model for probabilistic mineral nucleation and precipitation. A Lattice Boltzmann implementation of the two-dimensional mineral surface was developed to evaluate geometry evolution when probabilistic nucleation criterion is incorporated. To provide high-resolution surface information on mineral precipitation, growth, and distribution, we conducted a total of 27 calcium carbonate synthesis experiments in the laboratory. The results indicate that nucleation events as precursors determine the location and timing of crystal precipitation. It is shown that reaction rate has primary control over covering the substrate with nuclei and, subsequently, solid-phase accumulation. The work provides insight into the spatiotemporal evolution of porous media by suggesting probabilistic and deterministic domains for studying reactive transport processes. We indicate in which length- and time-scales it is essential to incorporate probabilistic nucleation for valid predictions.


2021 ◽  
Vol 9 ◽  
Author(s):  
Daniel H. James ◽  
Harold J. Bradbury ◽  
Gilad Antler ◽  
Zvi Steiner ◽  
Alec M. Hutchings ◽  
...  

We present pore fluid geochemistry, including major ion and trace metal concentrations and the isotopic composition of pore fluid calcium and sulfate, from the uppermost meter of sediments from the Gulf of Aqaba (Northeast Red Sea) and the Iberian Margin (North Atlantic Ocean). In both the locations, we observe strong correlations among calcium, magnesium, strontium, and sulfate concentrations as well as the sulfur isotopic composition of sulfate and alkalinity, suggestive of active changes in the redox state and pH that should lead to carbonate mineral precipitation and dissolution. The calcium isotope composition of pore fluid calcium (δ44Ca) is, however, relatively invariant in our measured profiles, suggesting that carbonate mineral precipitation is not occurring within the boundary layer at these sites. We explore several reasons why the pore fluid δ44Ca might not be changing in the studied profiles, despite changes in other major ions and their isotopic composition, including mixing between the surface and deep precipitation of carbonate minerals below the boundary layer, the possibility that active iron and manganese cycling inhibits carbonate mineral precipitation, and that mineral precipitation may be slow enough to preclude calcium isotope fractionation during carbonate mineral precipitation. Our results suggest that active carbonate dissolution and precipitation, particularly in the diffusive boundary layer, may elicit a more complex response in the pore fluid δ44Ca than previously thought.


2021 ◽  
Vol 129 (1) ◽  
Author(s):  
Serge Kräutle ◽  
Jan Hodai ◽  
Peter Knabner

AbstractWe consider a macroscale model of transport and reaction of chemical species in a porous medium with a special focus on mineral precipitation–dissolution processes. In the literature, it is frequently proposed that the reaction rate should depend on the reactive mineral surface area, and so on the amount of mineral. We point out that a frequently used model is ill posed in the sense that it admits non-unique solutions. We investigate what consequences this non-uniqueness has on the numerical solution of the model. The main novelty in this article is our proposal of a certain substitution which removes the ill-posedness from the system and which leads to better numerical results than some “ad hoc methods.” We think that the proposed substitution is a rather elegant way to get rid of the non-uniqueness and the numerical difficulties and is much less technical than other ideas. As a proof of concept, we present some numerical tests and simulations for the new model.


2021 ◽  
Vol 9 (6) ◽  
pp. 70
Author(s):  
Surapong Srisomboon ◽  
Matana Kettratad ◽  
Phakkhananan Pakawanit ◽  
Catleya Rojviriya ◽  
Prathip Phantumvanit ◽  
...  

Silver diamine fluoride (SDF) is a cost-effective method for arresting active dental caries. However, the limited cooperation of patients may lead to an SDF application time that is shorter than the recommended 1–3 min for carious lesions. Therefore, the aim of this study was to assess the effect of different application times of SDF on the degree of mineral precipitation in demineralized dentin. Demineralized dentin specimens from permanent maxillary molars were treated by applying 38% SDF for 30, 60, or 180 s. Water was applied in the control group. The specimens were immersed in simulated body fluid for 2 weeks, and the mineral precipitation in demineralized dentin was then analyzed using FTIR-ATR, SEM-EDX, and synchrotron radiation X-ray tomographic microscopy (SRXTM). The FTIR-ATR results showed a significant increase in mineral precipitation in the 180 s group after 1 week. However, after 2 weeks, the SRXTM images indicated comparable mineral density between the 30, 60, and 180 s groups. The precipitation of silver chloride and calcium phosphate crystals that occluded dentinal tubules was similar in all experimental groups. In conclusion, an application time of either 30, 60, or 180 s promoted a comparable degree of mineral precipitation in demineralized dentin.


Sign in / Sign up

Export Citation Format

Share Document