sediment pore water
Recently Published Documents


TOTAL DOCUMENTS

177
(FIVE YEARS 34)

H-INDEX

28
(FIVE YEARS 4)

2021 ◽  
Author(s):  
James Ward ◽  
Katharine Hendry ◽  
Sandra Arndt ◽  
Johan Faust ◽  
Felipe Freitas ◽  
...  

Biogeochemical cycling of silicon (Si) in the Barents Sea is under considerable pressure from physical and chemical changes, including dramatic warming and sea ice retreat, together with a decline in dissolved silicic acid (DSi) concentrations of Atlantic inflow waters since 1990. Moreover, further expansion of the Atlantic realm (termed `Atlantification') is expected to shift phytoplankton community compositions away from diatom-dominated spring bloomsin favour of Atlantic flagellate species (coccolithophore-dominated). The changes in pelagic primary production will alter the composition of the material comprising the depositional flux, which will subsequently in influence the recycling processes at and within the seafloor. In this study we assess the predominant controls on the early diagenetic cycling of Si, a key nutrient in marine ecosystems, by combining stable isotopic analysis of pore water DSi and of operationally defined reactive pools of the solid phase. We show that low biogenic silica (BSi) contents (0.39-0.52 wt% or 92-185 μmol g dry wt-1) drive correspondingly low asymptotic concentrations of pore water DSi (~100 μM). However, while these surface sediments appear almost devoid of BSi, we present evidence for the rapid recycling of bloom derived BSi that generates striking transient peaks in sediment pore water [DSi], which is a feature that is subject to future shifts in phytoplankton community compositions. Using a simple mass balance calculation we show that the pore water DSi pool is supplemented by a lithogenic Si source (LSi), while our sediment pore water Si isotopic profiles also uncover a coupling of the iron (Fe) and Si cycles. This has previously been observed in lower latitude marine sediment systems and thus provides further support for a redox influence on oceanic pore water DSi. We suggest that a high LSi:BSi ratio and apparent Fe (oxyhydr)oxide influence could lead to a degree of stability in the annual background benthic flux of DSi despite the pressures on pelagic phytoplankton communities. Coupled with supporting isotopic evidence for the precipitation of authigenic clays in Barents Sea sediment cores, our observations have implications for the sink vs recycling terms in the regional Si budget.


2021 ◽  
Author(s):  
Xiaohua Ma ◽  
Hao Yang ◽  
Changchun Huang ◽  
Tao Huang ◽  
Shuaidong Li

Abstract In this study, the sedimentary records, sources, and ecological risks of polycyclic aromatic hydrocarbons (PAHs) in Dianchi Lake were analyzed. The concentration ranges of ΣPAH16 in the sediments of Dianchi Lake were 368–990 ng/g, with an average value of 572 ng/g, peaking in 1988. Economic development and rapid population growth, as well as the rapid growth of coal consumption, have a greater impact on the HMW PAHs than on the LMW PAHs in the sedimentary environment. The results of the diagnostic ratios and PCA model show that the main sources of PAHs were coal and biomass combustion, as well as fossil fuel combustion sources in individual years. The risk assessment results showed that the PAH concentrations in the sediment were within a safe range. In the past 100 years of sediment pore water, except for Phe, which reached chronic toxic pollution levels in some years, other 2-3 ring LMW PAHs have been within a safe range. With the development of industrialization and urbanization, the burning of fossil fuels such as coal and petroleum has increased, and some of the 4-6 ring HMW PAHs have reached chronic toxicity or even acute toxicity in the sediment pore water.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6656
Author(s):  
Željka Fiket ◽  
Marija Petrović ◽  
Gordana Medunić ◽  
Tatjana Ivošević ◽  
Tomislav Fiket ◽  
...  

Assessing the environmental quality of coastal systems is important not only for the management and protection of such areas, but also for improving the quality of water resources. Since sediment itself can often be a source of certain toxic elements, in addition to information on the distribution of metals in the water column and in the sediment itself, it is useful to determine the bioavailable forms of individual elements, particularly toxic ones. In this study, water and sediment geochemical data were supplemented with oxyanion mobility in sediments estimated by diffusion gradients in thin film (DGTs). The data obtained indicate that the chemical composition of the water in the Raša River estuary primarily reflects the high input of suspended sediment from the catchment, the mixing of freshwater and seawater, and to a lesser extent the effects of anthropogenic activities. Although sediment composition is primarily determined by geological and hydrodynamic conditions in the catchment, it also indicates moderate enrichment in Co, Cr, Mo and Ni. In contrast, the distribution of oxyanions in sediment pore water indicates the influence of sediment as a source of some elements in the bottom water; e.g., sediment contributes to 40% of the arsenic bottom water budget. The obtained depth profiles of the oxyanion distribution in the sediment pore water indicate an early onset of suboxic to anoxic conditions in Raša Bay, which is prone to rapid sedimentation. All this demonstrates the need to consider the bioavailable forms of elements when assessing environmental quality, as the lack of such information can lead to an incomplete assessment, especially in dynamic coastal systems such as estuaries.


2021 ◽  
Vol 434 ◽  
pp. 106419
Author(s):  
E. Horstmann ◽  
Y. Tomonaga ◽  
M.S. Brennwald ◽  
M. Schmidt ◽  
V. Liebetrau ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 563
Author(s):  
Wiebe Förster ◽  
Jan C. Scholten ◽  
Michael Schubert ◽  
Kay Knoeller ◽  
Nikolaus Classen ◽  
...  

The eutrophic Lake Eichbaumsee, a ~1 km long and 280 m wide (maximum water depth 16 m) dredging lake southeast of Hamburg (Germany), has been treated for water quality improvements using various techniques (i.e., aeration plants, removal of dissolved phosphorous by aluminum phosphorous precipitation, and by Bentophos® (Phoslock Environmental Technologies, Sydney, Australia), adsorption) during the past ~15 years. Despite these treatments, no long-term improvement of the water quality has been observed and the lake water phosphorous content has continued to increase by e.g., ~670 kg phosphorous between autumn 2014 and autumn 2019. As no creeks or rivers drain into the lake and hydrological groundwater models do not suggest any major groundwater discharge into the lake, sources of phosphorous (and other nutrients) are unknown. We investigated the phosphorous fluxes from sediment pore water and from groundwater in the water body of the lake. Sediment pore water was extracted from sediment cores recovered by divers in August 2018 and February 2019. Diffusive phosphorous fluxes from pore water were calculated based on phosphorus gradients. Stable water isotopes (δ2H, δ18O) were measured in the lake water, in interstitial waters in the banks surrounding the lake, in the Elbe River, and in three groundwater wells close to the lake. Stable isotope (δ2H, δ18O) water mass balance models were used to compute water inflow/outflow to/from the lake. Our results revealed pore-water borne phosphorous fluxes between 0.2 mg/m2/d and 1.9 mg/m2/d. Assuming that the measured phosphorous fluxes are temporarily and spatially representative for the whole lake, about 11 kg/a to 110 kg/a of phosphorous is released from sediments. This amount is lower than the observed lake water phosphorous increase of ~344 kg between April 2018 and November 2018. Water stable isotope (δ2H, δ18O) compositions indicate a water exchange between an aquifer and the lake water. Based on stable isotope mass balances we estimated an inflow of phosphorous from the aquifer to the lake of between ~150 kg/a and ~390 kg/a. This result suggests that groundwater-borne phosphorous is a significant phosphorous source for the Eichbaumsee and highlights the importance of groundwater for lake water phosphorous balances.


2021 ◽  
Vol 148 ◽  
pp. 103827
Author(s):  
Anja Höhne ◽  
Karl Mellerowicz ◽  
Oliver Lischtschenko ◽  
Jörg Lewandowski

Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 202
Author(s):  
Meilian Chen ◽  
Ji-Hoon Kim ◽  
Sungwook Hong ◽  
Yun Kyung Lee ◽  
Moo Hee Kang ◽  
...  

Fjords in the high Arctic, as aquatic critical zones at the interface of land-ocean continuum, are undergoing rapid changes due to glacier retreat and climate warming. Yet, little is known about the biogeochemical processes in the Arctic fjords. We measured the nutrients and the optical properties of dissolved organic matter (DOM) in both seawater and sediment pore water, along with the remote sensing data of the ocean surface, from three West Svalbard fjords. A cross-fjord comparison of fluorescence fingerprints together with downcore trends of salinity, Cl−, and PO43− revealed higher impact of terrestrial inputs (fluorescence index: ~1.2–1.5 in seawaters) and glaciofluvial runoffs (salinity: ~31.4 ± 2.4 psu in pore waters) to the southern fjord of Hornsund as compared to the northern fjords of Isfjorden and Van Mijenfjorden, tallying with heavier annual runoff to the southern fjord of Hornsund. Extremely high levels of protein-like fluorescence (up to ~4.5 RU) were observed at the partially sea ice-covered fjords in summer, in line with near-ubiquity ice-edge blooms observed in the Arctic. The results reflect an ongoing or post-phytoplankton bloom, which is also supported by the higher levels of chlorophyll a fluorescence at the ocean surface, the very high apparent oxygen utilization through the water column, and the nutrient drawdown at the ocean surface. Meanwhile, a characteristic elongated fluorescence fingerprint was observed in the fjords, presumably produced by ice-edge blooms in the Arctic ecosystems. Furthermore, alkalinity and the humic-like peaks showed a general downcore accumulation trend, which implies the production of humic-like DOM via a biological pathway also in the glaciomarine sediments from the Arctic fjords.


Sign in / Sign up

Export Citation Format

Share Document