Suppressor of Cytokine Signaling Family Protein

2020 ◽  
Author(s):  
2006 ◽  
Vol 44 (01) ◽  
Author(s):  
C Ehlting ◽  
F Schaper ◽  
ED Brenndörfer ◽  
PC Heinrich ◽  
D Häussinger ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jatin Sharma ◽  
Teresa D. Collins ◽  
Tracoyia Roach ◽  
Shiwangi Mishra ◽  
Brandon K. Lam ◽  
...  

AbstractAutoimmune diseases are driven largely by a pathogenic cytokine milieu produced by aberrantly activated lymphocytes. Many cytokines, including interferon gamma (IFN-γ), utilize the JAK/STAT pathway for signal propagation. Suppressor of Cytokine Signaling-1 (SOCS1) is an inducible, intracellular protein that regulates IFN-γ signaling by dampening JAK/STAT signaling. Using Fas deficient, MRL/MpJ-Faslpr/J (MRL/lpr) mice, which develop lupus-like disease spontaneously, we tested the hypothesis that a peptide mimic of the SOCS1 kinase inhibitory region (SOCS1-KIR) would inhibit lymphocyte activation and modulate lupus-associated pathologies. Consistent with in vitro studies, SOCS1-KIR intraperitoneal administration reduced the frequency, activation, and cytokine production of memory CD8+ and CD4+ T lymphocytes within the peripheral blood, spleen, and lymph nodes. In addition, SOCS1-KIR administration reduced lymphadenopathy, severity of skin lesions, autoantibody production, and modestly reduced kidney pathology. On a cellular level, peritoneal SOCS1-KIR administration enhanced Foxp3 expression in total splenic and follicular regulatory T cells, reduced the effector memory/naïve T lymphocyte ratio for both CD4+ and CD8+ cells, and reduced the frequency of GL7+ germinal center enriched B cells. Together, these data show that SOCS1-KIR treatment reduced auto-reactive lymphocyte effector functions and suggest that therapeutic targeting of the SOCS1 pathway through peptide administration may have efficacy in mitigating autoimmune pathologies.


Sign in / Sign up

Export Citation Format

Share Document