magnetic losses
Recently Published Documents


TOTAL DOCUMENTS

243
(FIVE YEARS 30)

H-INDEX

19
(FIVE YEARS 2)

Author(s):  
S. Goolak ◽  
Ie. Riabov ◽  
V. Tkachenko ◽  
S. Sapronova ◽  
I. Rubanik

The aim of the work is to develop a mathematical model of the traction motor of the pulsating current of an electric locomotive taking into account the magnetic losses in the motor steel to determine the starting parameters depending on the voltage of the armature winding. Methodology. Mathematical modeling of electromagnetic processes in a traction motor of pulsating current is applied taking into account the nonlinear nature of the armature inductance, the inductance of the excitation winding and the nonlinear nature of the universal magnetic characteristic. The magnetic losses in the steel of the traction motor were taken into account by establishing the dependence of these losses on the frequency of reversal, the magnetic flux in the magnetic circuit of the motor and the geometric dimensions of the motor. Results. The mathematical model of calculation of starting parameters of the traction engine of the pulsating current of the traction drive of the electric locomotive of alternating current taking into account the equation of instantaneous value of losses in engine steel is developed. The dynamic characteristics of the traction motor with pulsating current are obtained. It allows to investigate starting parameters of the traction engine on the basis of the received mathematical model and to design elements of the traction drive of the electric locomotive according to the specification, to choose optimum design parameters. Originality. For the first time a comprehensive study of the pulsating current traction motor was carried out taking into account the nonlinear nature of the armature inductance, excitation winding inductance and nonlinear nature of the universal magnetic characteristic and taking into account the magnetic losses in the motor steel. Practical significance. The model of the traction motor of pulsating current taking into account losses in steel of the engine on the basis of the carried-out calculation is developed. Experimental studies have confirmed the adequacy of the model, which allows to apply the obtained model to develop a mathematical model of an AC electric locomotive to study the electrodynamic processes in it at different modes of operation of the electric locomotive.


2021 ◽  
Vol 2140 (1) ◽  
pp. 012026
Author(s):  
V P Krylov

Abstract In free space, the relative permittivity is determined by the Brewster formula without taking into account dielectric and magnetic losses. In experimental studies, discrepancies in the angular position of the minimum of the reflected wave from dielectric materials are observed in comparison with calculations, which are known as deviations from Fresnel’s laws. By solving the task of inclined falling wave on an plate made of a dielectric material with complex of the dielectric and magnetic permittivity, the parameters of the reflected wave were calculated, according to which the angles corresponding to the minimum reflection were determined, depending on the dielectric losses of the material. From the condition that the reflected wave is equal to zero, a formula for determining the Brewster angle for a material with dielectric and magnetic losses was analytically obtained, the results of calculations for which coincided with the calculations for the reflected wave in the context of geometric optics. It is determined that in the general case, the conditions for determining the position of the minimum of the complex amplitude and the phase jump by 180° of electromagnetic waves do not coincide and can be found only when solving the task an falling wave on a plate with complex electrodynamic parameters of the material in the context of geometric optics.


2021 ◽  
Vol 11 (5) ◽  
pp. 7720-7729
Author(s):  
D. Vatamanu ◽  
S. Miclaus

The growing evidence of increased magnetite nanoparticles (both endo- and exo-genic) in the human brain raises the importance of assessing the entire power deposition when electromagnetic waves at GHz frequencies propagate in such tissues. This frequency range corresponds to many popular portable communication devices that emit radiation close to a human's head. At these frequencies, the current dosimetric numerical codes can not accurately compute the magnetic losses part. This is due to the lack of an implemented computational algorithm based on solving the coupled Maxwell and Landau-Lifshitz-Gilbert equations, in the case of magneto-dielectrics, considering eddy currents losses and specific properties of magnetic sub-millimetric particles. This paper focuses on analyzing the limits and the inconsistencies when using commercial dosimetric numerical software to analyze the total absorbed power in brain models having ferrimagnetic content and being exposed to 3.5GHz electromagnetic waves. Magnetic losses computed using Polder’s permeability tensor as constitutive relation lead to unreliable results. However, using such software can provide a preliminary view of the electromagnetic impact of ultra- and super-high frequencies on magnetic-dielectric tissues.


Metrologiya ◽  
2021 ◽  
pp. 35-47
Author(s):  
S. M. Plotnikov

The problem of reducing magnetic losses (no-load losses) in the steel of the magnetic cores of electrical machines is investigated. The tasc of determining the optimal thickness of steel sheets of the magnetic circuit of an electric machine is considered. The criterion for optimality is the minimum power of magnetic losses in steel. Currently, this problem does not have an exact solution due to the fact that the exact ratio of the hysteresis and eddy current components of magnetic losses in steel is unknown. Analyzed the power of magnetic losses in modern electrical machines and devices, depending on the thickness of the sheets of electrical steel. A method is proposed for determining the optimal thickness of steel sheets of the magnetic circuit of an electric machine based on the wattmeter method. In the course of the experiment, two identical magnetic circuits were selected from steel sheets of different thicknesses, for which the losses in steel were measured at different frequencies of magnetization reversal and the optimal thickness of the sheets was calculated. The proposed formula for calculating the thickness of the sheets is valid for both isotropic and anisotropic steel. The proposed technique can be used for both transformers and electric motors and generators.


Author(s):  
Weiming Zhang ◽  
Fu-Zhi Dai ◽  
Huimin Xiang ◽  
Biao Zhao ◽  
Xiaohui Wang ◽  
...  

AbstractThe advance in communication technology has triggered worldwide concern on electromagnetic wave pollution. To cope with this challenge, exploring high-performance electromagnetic (EM) wave absorbing materials with dielectric and magnetic losses coupling is urgently required. Of the EM wave absorbers, transition metal diborides (TMB2) possess excellent dielectric loss capability. However, akin to other single dielectric materials, poor impedance match leads to inferior performance. High-entropy engineering is expected to be effective in tailoring the balance between dielectric and magnetic losses through compositional design. Herein, three HE TMB2 powders with nominal equimolar TM including HE TMB2-1 (TM = Zr, Hf, Nb, Ta), HE TMB2-2 (TM = Ti, Zr, Hf, Nb, Ta), and HE TMB2-3 (TM = Cr, Zr, Hf, Nb, Ta) have been designed and prepared by one-step boro/carbothermal reduction. As a result of synergistic effects of strong attenuation capability and impedance match, HE TMB2-1 shows much improved performance with the optimal minimum reflection loss (RLmin) of −59.6 dB (8.48 GHz, 2.68 mm) and effective absorption bandwidth (EAB) of 7.6 GHz (2.3 mm). Most impressively, incorporating Cr in HE TMB2-3 greatly improves the impedance match over 1–18 GHz, thus achieving the RLmin of −56.2 dB (8.48 GHz, 2.63 mm) and the EAB of 11.0 GHz (2.2 mm), which is superior to most other EM wave absorbing materials. This work reveals that constructing high-entropy compounds, especially by incorporating magnetic elements, is effectual in tailoring the impedance match for highly conductive compounds, i.e., tuning electrical conductivity and boosting magnetic loss to realize highly efficient and broadband EM wave absorption with dielectric and magnetic coupling in single-phase materials.


Sign in / Sign up

Export Citation Format

Share Document