scholarly journals Direct simulation Monte Carlo for modeling spatially homogeneous multi-component aerosols

2018 ◽  
Author(s):  
◽  
Issac Saldivar

Nuclear aerosols generated under normal operational and post-accident reactor environments are of particular importance in estimation of the nuclear source term. Several light water reactor aerosol containment experiments provided an experimental database for verification and validation of thermal-hydraulic and aerosol transport codes. The Direct Simulation Monte Carlo (DSMC) technique has been shown to model multicomponent aerosol dynamics accurately while maintaining greater fidelity to actual aerosol physics than its sectional, moments, and finite element predecessors. This research focuses on the development of a comprehensive n-component source term code for modeling the behavior of aerosolized fission products based on the DSMC technique. Effective DSMC benchmarks provided further confidence in the technique's capabilities for modeling exceedingly complex systems. With the inclusion of the Knudsen, Kelvin, and solute effects in the Mason model, the role of condensation on aerosol evolution showed the differentiation of particles by physical size and chemical properties. High fidelity large-scale simulations posed evident but considerable challenges to computational runtime. Developments in the simulation scaling theory for coagulation, condensation, deposition, and generation processes showed to give comparable results while simultaneously reducing simulation time significantly. The evolution of aerosols coupled to environments was explored, and benchmark simulations provided further evidence that DSMC accurately models aerosol dynamics when coupled with containment thermal-hydraulics.

Author(s):  
Sauro Succi

This chapter provides a bird’s eye view of the main numerical particle methods used in the kinetic theory of fluids, the main purpose being of locating Lattice Boltzmann in the broader context of computational kinetic theory. The leading numerical methods for dense and rarified fluids are Molecular Dynamics (MD) and Direct Simulation Monte Carlo (DSMC), respectively. These methods date of the mid 50s and 60s, respectively, and, ever since, they have undergone a series of impressive developments and refinements which have turned them in major tools of investigation, discovery and design. However, they are both very demanding on computational grounds, which motivates a ceaseless demand for new and improved variants aimed at enhancing their computational efficiency without losing physical fidelity and vice versa, enhance their physical fidelity without compromising computational viability.


1998 ◽  
Vol 120 (2) ◽  
pp. 296-302 ◽  
Author(s):  
Masato Ikegawa ◽  
Jun’ichi Kobayashi ◽  
Morihisa Maruko

As integrated circuits are advancing toward smaller device features, step-coverage in submicron trenches and holes in thin film deposition are becoming of concern. Deposition consists of gas flow in the vapor phase and film growth in the solid phase. A deposition profile simulator using the direct simulation Monte Carlo method has been developed to investigate deposition profile characteristics on small trenches which have nearly the same dimension as the mean free path of molecules. This simulator can be applied to several deposition processes such as sputter deposition, and atmospheric- or low-pressure chemical vapor deposition. In the case of low-pressure processes such as sputter deposition, upstream boundary conditions of the trenches can be calculated by means of rarefied gas flow analysis in the reactor. The effects of upstream boundary conditions, molecular collisions, sticking coefficients, and surface migration on deposition profiles in the trenches were clarified.


Sign in / Sign up

Export Citation Format

Share Document