scholarly journals Prediction of knee loading in native knee and total knee arthroplasty : a forward dynamics computational study

2019 ◽  
Author(s):  
◽  
Swithin Samuel Razu

"The goal of this dissertation is to develop a musculoskeletal model and corroborate model predictions to experimentally measured in vivo knee contact forces, in order to study the biomechanical consequences of two different total knee arthroplasty designs. The two main contributions of this dissertation are: (1) Corroboration to experimental data: The development of an EMG-driven, full-body, musculoskeletal model with subject-specific leg geometries including deformable contacts, ligaments, 6DOF knee joint, and a shoe-floor model that can concurrently predict muscle forces, ligament forces, and joint contact forces. Model predictions of tibiofemoral joint contact forces were evaluated against the subject-specific in vivo measurements from the instrumented TKR for three distinctly different styles of over ground gait. (2) Virtual surgery in TKA: The musculoskeletal modeling methodology was then used to develop a model for one healthy participant with a native knee and then virtually replacing the native knee with fixed-bearing and mobile-bearing total knee arthroplasty designs performing gait and step-up tasks. This approach minimized the biomechanical impact of variations in sex, geometry, implant size, design and positioning, ligament location and tension, and muscle forces found across patients. The differences in biomechanics were compared for the two designs. 1.2 Significance of this Research The world health organization ranks musculoskeletal disorders as the second largest contributor to disability worldwide. Conservative estimates put the national cost of direct care for musculoskeletal disease at $212.7 billion a year [1]. Many people who suffer from neuromuscular or musculoskeletal diseases may benefit from the insights gained from surgery simulations, since musculoskeletal reconstructions are commonly performed on these individuals. Improved surgical outcomes will benefit these individuals not only in the short-term, but also in the long-term, since their future rehabilitation needs may be reduced. For example, although total knee arthroplasty is a common surgical procedure for the treatment of osteoarthritis with over 700,000 procedures performed each year [2], many patients are unhappy with the ultimate results [3]. Ten to 30% of patients report [4] pain, dissatisfaction with function, and the need for further surgery such as revision after the initial surgery resulting in costs exceeding $11 billion [5]. Potentially, simulation studies that quantify the important biomechanical variables will reduce the need for revision surgeries in patients."--Introduction.

2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Swithin S. Razu ◽  
Trent M. Guess

Computational models that predict in vivo joint loading and muscle forces can potentially enhance and augment our knowledge of both typical and pathological gaits. To adopt such models into clinical applications, studies validating modeling predictions are essential. This study created a full-body musculoskeletal model using data from the “Sixth Grand Challenge Competition to Predict in vivo Knee Loads.” This model incorporates subject-specific geometries of the right leg in order to concurrently predict knee contact forces, ligament forces, muscle forces, and ground contact forces. The objectives of this paper are twofold: (1) to describe an electromyography (EMG)-driven modeling methodology to predict knee contact forces and (2) to validate model predictions by evaluating the model predictions against known values for a patient with an instrumented total knee replacement (TKR) for three distinctly different gait styles (normal, smooth, and bouncy gaits). The model integrates a subject-specific knee model onto a previously validated generic full-body musculoskeletal model. The combined model included six degrees-of-freedom (6DOF) patellofemoral and tibiofemoral joints, ligament forces, and deformable contact forces with viscous damping. The foot/shoe/floor interactions were modeled by incorporating shoe geometries to the feet. Contact between shoe segments and the floor surface was used to constrain the shoe segments. A novel EMG-driven feedforward with feedback trim motor control strategy was used to concurrently estimate muscle forces and knee contact forces from standard motion capture data collected on the individual subject. The predicted medial, lateral, and total tibiofemoral forces represented the overall measured magnitude and temporal patterns with good root-mean-squared errors (RMSEs) and Pearson's correlation (p2). The model accuracy was high: medial, lateral, and total tibiofemoral contact force RMSEs = 0.15, 0.14, 0.21 body weight (BW), and (0.92 < p2 < 0.96) for normal gait; RMSEs = 0.18 BW, 0.21 BW, 0.29 BW, and (0.81 < p2 < 0.93) for smooth gait; and RMSEs = 0.21 BW, 0.22 BW, 0.33 BW, and (0.86 < p2 < 0.95) for bouncy gait, respectively. Overall, the model captured the general shape, magnitude, and temporal patterns of the contact force profiles accurately. Potential applications of this proposed model include predictive biomechanics simulations, design of TKR components, soft tissue balancing, and surgical simulation.


Author(s):  
Kartik M. Varadarajan ◽  
Angela Moynihan ◽  
Darryl D’Lima ◽  
Clifford W. Colwell ◽  
Harry E. Rubash ◽  
...  

Accurate knowledge of in vivo articular contact kinematics and contact forces is required to quantitatively understand factors limiting life of total knee arthroplasty (TKA) implants, such as polyethylene component wear and implant loosening [1]. Determination of in vivo tibiofemoral contact forces has been a challenging issue in biomechanics. Historically, instrumented tibial implants have been used to measure tibiofemoral forces in vitro [2] and computational models involving inverse dynamic optimization have been used to estimate joint forces in vivo [3]. Recently, D’Lima et al. reported the first in vivo measurement of 6DOF tibiofemoral forces via an instrumented implant in a TKA patient [4]. However this technique does not provide a direct estimation of tibiofemoral contact forces in the medial and lateral compartments. Recently, a dual fluoroscopic imaging system has been used to accurately determine tibiofemoral contact locations on the medial and lateral tibial polyethylene surfaces [5]. The objective of this study was to combine the dual fluoroscope technique and the instrumented TKAs to determine the dynamic 3D articular contact kinematics and contact forces on the medial and lateral tibial polyethylene surfaces during functional activities.


2008 ◽  
Vol 41 (10) ◽  
pp. 2159-2168 ◽  
Author(s):  
Kartik M. Varadarajan ◽  
Angela L. Moynihan ◽  
Darryl D’Lima ◽  
Clifford W. Colwell ◽  
Guoan Li

Author(s):  
Justin W. Fernandez ◽  
Hyung J. Kim ◽  
Massoud Akbarshahi ◽  
Jonathan P. Walter ◽  
Benjamin J. Fregly ◽  
...  

Many studies have used musculoskeletal models to predict in vivo muscle forces at the knee during gait [1, 2]. Unfortunately, quantitative assessment of the model calculations is often impracticable. Various indirect methods have been used to evaluate the accuracy of model predictions, including comparisons against measurements of muscle activity, joint kinematics, ground reaction forces, and joint moments. In a recent study, an instrumented hip implant was used to validate calculations of hip contact forces directly [3]. The same model was subsequently used to validate model calculations of tibiofemoral loading during gait [4]. Instrumented knee implants have also been used in in vitro and in vivo studies to quantify differences in biomechanical performance between various TKR designs [5, 6]. The main aim of the present study was to evaluate model predictions of knee muscle forces by direct comparison with measurements obtained from an instrumented knee implant. Calculations of muscle and joint-contact loading were performed for level walking at slow, normal, and fast speeds.


Author(s):  
Tanner Thorsen ◽  
Chen Wen ◽  
Songning Zhang

Abstract The purpose of this study was to determine how tibiofemoral joint compressive forces and knee joint-spanning muscle forces during uphill walking change compared to level walking in patients with total knee arthroplasty (TKA). A musculoskeletal model capable of resolving total (TCF), medial (MCF), and lateral (LCF) tibiofemoral compressive forces was used to determine compressive forces and muscle forces during level and uphill walking on a 10° incline for twenty-five post TKA patients. A 2?2 (slope: level and 10° ? limb: replaced and non-replaced) repeated measures ANOVA was used to detect differences in knee contact forces between slope and limb conditions and their interaction. Peak loading-response TCF, MCF, and LCF were greater during uphill walking than level walking for non-replaced limbs. During uphill walking, peak loading-response TCF was smaller in the replaced limb compared to non-replaced limbs with no change in MCF or LCF. Peak knee extension moment and knee extensor muscle force were smaller in replaced limbs compared to non-replaced limbs during uphill walking. During level walking, replaced and non-replaced limbs experienced rather equal joint loading, however replaced limb experienced reduced joint loading during uphill walking. Differences in joint loading between replaced and non-replaced limbs were not present during level walking, suggesting compensation from the replaced limb during the more difficult task. Uphill walking following TKA promotes more balanced loading of replaced limbs during stance, however these benefits may come at the expense of increased loading on non-replaced limbs.


2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Marco A. Marra ◽  
Valentine Vanheule ◽  
René Fluit ◽  
Bart H. F. J. M. Koopman ◽  
John Rasmussen ◽  
...  

Musculoskeletal (MS) models should be able to integrate patient-specific MS architecture and undergo thorough validation prior to their introduction into clinical practice. We present a methodology to develop subject-specific models able to simultaneously predict muscle, ligament, and knee joint contact forces along with secondary knee kinematics. The MS architecture of a generic cadaver-based model was scaled using an advanced morphing technique to the subject-specific morphology of a patient implanted with an instrumented total knee arthroplasty (TKA) available in the fifth “grand challenge competition to predict in vivo knee loads” dataset. We implemented two separate knee models, one employing traditional hinge constraints, which was solved using an inverse dynamics technique, and another one using an 11-degree-of-freedom (DOF) representation of the tibiofemoral (TF) and patellofemoral (PF) joints, which was solved using a combined inverse dynamic and quasi-static analysis, called force-dependent kinematics (FDK). TF joint forces for one gait and one right-turn trial and secondary knee kinematics for one unloaded leg-swing trial were predicted and evaluated using experimental data available in the grand challenge dataset. Total compressive TF contact forces were predicted by both hinge and FDK knee models with a root-mean-square error (RMSE) and a coefficient of determination (R2) smaller than 0.3 body weight (BW) and equal to 0.9 in the gait trial simulation and smaller than 0.4 BW and larger than 0.8 in the right-turn trial simulation, respectively. Total, medial, and lateral TF joint contact force predictions were highly similar, regardless of the type of knee model used. Medial (respectively lateral) TF forces were over- (respectively, under-) predicted with a magnitude error of M < 0.2 (respectively > −0.4) in the gait trial, and under- (respectively, over-) predicted with a magnitude error of M > −0.4 (respectively < 0.3) in the right-turn trial. Secondary knee kinematics from the unloaded leg-swing trial were overall better approximated using the FDK model (average Sprague and Geers' combined error C = 0.06) than when using a hinged knee model (C = 0.34). The proposed modeling approach allows detailed subject-specific scaling and personalization and does not contain any nonphysiological parameters. This modeling framework has potential applications in aiding the clinical decision-making in orthopedics procedures and as a tool for virtual implant design.


Author(s):  
Jeffrey E. Bischoff ◽  
Justin S. Hertzler

Computational modeling of the reconstructed knee is an important tool in designing components for maximum functionality and life. Utilization of boundary conditions consistent with in vivo gait loading in such models enables predictions of knee kinematics and polyethylene damage [1–4], which can then be used to optimize component design. Several recent clinical studies have focused on complications associated with the patellofemoral joint [5–6], highlighting the need to better understand the mechanics of this compartment of total knee arthroplasty (TKA). This study utilizes a computational model to characterize the impact of gait loading on the mechanics of the patella in TKA.


Sign in / Sign up

Export Citation Format

Share Document