scholarly journals Application of artificial neural network in neutron/gamma pulse shape discrimination for EJ301 scintillation detector

Author(s):  
Chuân Văn Phan ◽  
Hải Xuân Nguyễn ◽  
Anh Ngọc Nguyễn ◽  
Hải Xuân Phạm ◽  
Phong Xuân Mai ◽  
...  

The scintilator detectors are sensitive to both neutron and gamma radiation. Therefore, right identification of the pulses which generated by neutrons or gamma ray from these detectors plays an important role in neutron measurement by using scintilator detector. In order to improve the ability to pulse shape discrimination (PSD), many PSD techniques have been studied, developed and applied. In this work, we use a basic configuration of a Fully connected Neural network (Fc- Net) where the number of elements of the network is minimum, and each element corresponds to identified specification of neutron or gamma pulses measured by using EJ-301 scintilator detector. The minimum of error principle has been applied for neuron network design; therefore, the accuracy of recognitions did not affect by this reduced network. The obtained results show that the identify accuracy of FcNet is higher than those of digital charge integration (DCI) method. Being tested using 60Co radioactive source, it is shown that, with the application of the FcNet, the accuracy of the gamma pulses discrimination acquires 98.60% in the energy region from 50 to 2000 keV electron equivalent energy (keVee), and 95.59% in the energy region from 50 to 150 keVee. In general, the obtained results indicate that the artificial neural network method can be applied to build neutron/gamma spectrometers with limited hardware.

1994 ◽  
Vol 144 ◽  
pp. 635-639
Author(s):  
J. Baláž ◽  
A. V. Dmitriev ◽  
M. A. Kovalevskaya ◽  
K. Kudela ◽  
S. N. Kuznetsov ◽  
...  

AbstractThe experiment SONG (SOlar Neutron and Gamma rays) for the low altitude satellite CORONAS-I is described. The instrument is capable to provide gamma-ray line and continuum detection in the energy range 0.1 – 100 MeV as well as detection of neutrons with energies above 30 MeV. As a by-product, the electrons in the range 11 – 108 MeV will be measured too. The pulse shape discrimination technique (PSD) is used.


This study examines the potential of artificial neural network (ANN) to predict Total Volatile Organic Compounds (TVOCs) released via decomposition of local food wastes. To mimic the decomposition process, a bioreactor was designed to stimulate the food waste storage condition. The food waste was modeled based on the waste composition from a residential area. A feed forward multilayer back propagation (Levenberg – Marquardt training algorithm) was then developed to predict the TVOCs. The findings indicate that a two-layer artificial neuron network (ANN) with six input variables and these include (outside and inside temperature, pH, moisture content, oxygen level, relative humidity) with a total of eighty eight (88) data are used for the modeling purpose. The network with the highest regression coefficient (R) is 0.9967 and the lowest Mean Square Error (MSE) is 0.00012 (nearest to the value of zero) has been selected as the Optimum ANN model. The findings of this study suggest the most suitable ANN model that befits the research objective is ANN model with one (1) hidden layer with fifteen (15) hidden neurons. Additionally, it is critical to note that the results from the experiment and predicted model are in good agreement.


2018 ◽  
Vol 145 ◽  
pp. 193-201 ◽  
Author(s):  
Zhang-jian Qin ◽  
Chuan Chen ◽  
Jun-song Luo ◽  
Xing-hong Xie ◽  
Liang-quan Ge ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document