crab nebula
Recently Published Documents


TOTAL DOCUMENTS

977
(FIVE YEARS 82)

H-INDEX

63
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Daochun Yu ◽  
Haitao Li ◽  
Baoquan Li ◽  
Mingyu Ge ◽  
Youli Tuo ◽  
...  

Abstract. The X-ray Earth occultation sounding (XEOS) is an emerging method for measuring the neutral density in the lower thermosphere. In this paper, the X-ray Earth occultation (XEO) of the Crab Nebula is investigated by using the Insight-HXMT. The pointing observation data on the 30th September, 2018 recorded by the Low Energy X-ray telescope (LE) of Insight-HXMT are selected and analyzed. The extinction lightcurves and spectra during the X-ray Earth occultation process are extracted. A forward model for the XEO lightcurve is established and the theoretical observational signal for lightcurve is predicted. A Bayesian data analysis method is developed for the XEO lightcurve modeling and the atmospheric density retrieval. The posterior probability distribution of the model parameters is derived through the Markov Chain Monte Carlo (MCMC) algorithm with the NRLMSISE-00 model and the NRLMSIS 2.0 model as basis functions and the best-fit density profiles are retrieved respectively. It is found that in the altitude range of 105–200 km, the retrieved density profile is 88.8 % of the density of NRLMSISE-00 and 109.7 % of the density of NRLMSIS 2.0 by fitting the lightcurve in the energy range of 1.0–2.5 keV based on XEOS method. In the altitude range of 95–125 km, the retrieved density profile is 81.0 % of the density of NRLMSISE-00 and 92.3 % of the density of NRLMSIS 2.0 by fitting the lightcurve in the energy range of 2.5–6.0 keV based on XEOS method. In the altitude range of 85–110 km, the retrieved density profile is 87.7 % of the density of NRLMSISE-00 and 101.4 % of the density of NRLMSIS 2.0 by fitting the lightcurve in the energy range of 6.0–10.0 keV based on XEOS method. The measurements of density profiles are compared with the NRLMSISE-00/NRLMSIS 2.0 model simulations and the previous retrieval results with RXTE satellite. Finally, we find that the retrieved density profile from Insight-HXMT based on the NRLMSISE-00/NRLMSIS 2.0 models is qualitatively consistent with the previous retrieved results from RXTE. This study demonstrate that the XEOS from the X-ray astronomical satellite Insight-HXMT can provide an approach for the study of the upper atmosphere. The Insight-HXMT satellite can join the family of the XEOS. The Insight-HXMT satellite with other X-ray astronomical satellites in orbit can form a space observation network for XEOS in the future.


2022 ◽  
Vol 924 (2) ◽  
pp. 42
Author(s):  
Lin Nie ◽  
Yang Liu ◽  
Zejun Jiang ◽  
Xiongfei Geng

Abstract It has been long debated whether the high-energy gamma-ray radiation from the Crab Nebula stems from leptonic or hadronic processes. In this work, we investigate the multiband nonthermal radiation from the Crab pulsar wind nebula with the leptonic and leptonic–hadronic hybrid models, respectively. Then we use the Markov Chain Monte Carlo sampling technology and method of sampling trace to study the stability and reasonability of the model parameters according to the recently observed results and obtain the best-fitting values of parameters. Finally, we calculate different radiative components generated by the electrons and protons in the Crab Nebula. The modeling results indicate that the pure leptonic origin model with the one-zone only can partly agree with some segments of the data from various experiments (including the PeV gamma-ray emission reported by the LHAASO and the other radiation ranging from the radio to very-high-energy gamma-ray wave band), and the contribution of hadronic interaction is hardly constrained. However, we find that the hadronic process may also contribute, especially in the energy range exceeding the PeV. In addition, it can be inferred that the higher energy signals from the Crab Nebula could be observed in the future.


Author(s):  
Ruo-Yu Liu

The Large High Altitude Air Shower Observatory (LHAASO) has recently published the first results, including the discovery of 12 ultrahigh-energy gamma-ray sources (with emission above 100[Formula: see text]TeV) above [Formula: see text] confidence level and a detailed analysis of Crab Nebula. This contribution gives a brief introduction to the LHAASO experiment and its recent discoveries.


2021 ◽  
Vol 922 (2) ◽  
pp. 221
Author(s):  
Ruo-Yu Liu ◽  
Xiang-Yu Wang

Abstract Recently, two photons from the Crab Nebula with energy of approximately 1 PeV were detected by the Large High Altitude Air Shower Observatory (LHAASO), opening an ultrahigh-energy window for studying pulsar wind nebulae (PWNe). Remarkably, the LHAASO spectrum at the highest-energy end shows a possible hardening, which could indicate the presence of a new component. A two-component scenario with a main electron component and a secondary proton component has been proposed to explain the whole spectrum of the Crab Nebula, requiring a proton energy of 1046–1047 erg remaining in the present Crab Nebula. In this paper, we study the energy content of relativistic protons in pulsar winds using the LHAASO data of the Crab Nebula, considering the effect of diffusive escape of relativistic protons. Depending on the extent of the escape of relativistic protons, the total energy of protons lost in the pulsar wind could be 10–100 times larger than that remaining in the nebula presently. We find that the current LHAASO data allow up to (10–50)% of the spindown energy of pulsars being converted into relativistic protons. The escaping protons from PWNe could make a considerable contribution to the cosmic-ray flux of 10–100 PeV. We also discuss the leptonic scenario for the possible spectral hardening at PeV energies.


2021 ◽  
Vol 21 (11) ◽  
pp. 286
Author(s):  
Lu Wen ◽  
Ke-Yao Wu ◽  
Huan Yu ◽  
Jun Fang

Abstract The Crab nebula is a prominent pulsar wind nebula detected in multiband observations ranging from radio to very high-energy γ-rays. Recently, γ-rays with energies above 1 PeV have been detected by the Large High Altitude Air Shower Observatory, and the energy of the most energetic particles in the nebula can be constrained. In this paper, we investigate the broadest spectral energy distribution of the Crab nebula and the energy distribution of the electrons emitting the multiwavelength nonthermal emission based on a one-zone time-dependent model. The nebula is powered by the pulsar, and high-energy electrons/positrons with a broken power-law spectrum are continually injected in the nebula as the pulsar spins down. Multiwavelength nonthermal emission is generated by the leptons through synchrotron radiation and inverse Compton scattering. Using appropriate parameters, the detected fluxes for the nebula can be well reproduced, especially for the γ-rays from 102 MeV to 1 PeV. The results show that the detected γ-rays can be produced by the leptons via the inverse Compton scattering, and the lower limit of the Lorentz factor of the most energetic leptons is ∼ 8.5 × 109. It can be concluded that there exist electrons/positrons with energies higher than 4.3 PeV in the Crab nebula.


Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 448
Author(s):  
Elena Amato ◽  
Barbara Olmi

Slightly more than 30 years ago, Whipple detection of the Crab Nebula was the start of Very High Energy gamma-ray astronomy. Since then, gamma-ray observations of this source have continued to provide new surprises and challenges to theories, with the detection of fast variability, pulsed emission up to unexpectedly high energy, and the very recent detection of photons with energy exceeding 1 PeV. In this article, we review the impact of gamma-ray observations on our understanding of this extraordinary accelerator.


2021 ◽  
Vol 257 (2) ◽  
pp. 36
Author(s):  
Matthew J. Millard ◽  
Aravind P. Ravi ◽  
Jeonghee Rho ◽  
Sangwook Park

Abstract We present far-infrared (FIR) spectroscopy of supernova remnants (SNRs) based on the archival data of the Infrared Space Observatory taken with the Long Wavelength Spectrometer (LWS). Our sample includes previously unpublished profiles of line and continuum spectra for 20 SNRs in the Galaxy and Magellanic Clouds. In several SNRs including G21.5–0.9, G29.7–0.3, the Crab Nebula, and G320.4–1.2, we find evidence for broad [O i], [O iii], [N ii], and [C ii] lines with velocity dispersions up to a few 103 km s−1, indicating that they are associated with high-velocity SN ejecta. Our detection of Doppler-broadened atomic emission lines and a bright FIR continuum hints at the presence of newly formed dust in SN ejecta. For G320.4–1.2, we present the first estimate of an ejecta-dust mass of 0.1–0.2 M ⊙, which spatially coincides with the broad-line emission, by applying a blackbody model fit with components of the SNR and background emission. Our sample includes raster maps of 63 μm, 145 μm [O i], and 158 μm [C ii] lines toward SNRs Kes 79, CTB 109, and IC 443. Based on these line intensities, we suggest interacting shock types in these SNRs. Finally, we compare our LWS spectra of our sample SNRs with the spectra of several H ii regions, and discuss their FIR line intensity ratios and continuum properties. Follow-up observations with modern instruments (e.g., JWST and SOFIA) with higher spatial and spectral resolution are encouraged for an extensive study of the SN ejecta and the SN dust.


2021 ◽  
Vol 921 (1) ◽  
pp. 34
Author(s):  
Silvia Masi ◽  
Paolo de Bernardis ◽  
Fabio Columbro ◽  
Alessandro Coppolecchia ◽  
Giuseppe D’Alessandro ◽  
...  

Author(s):  
Kohta Murase ◽  
Conor M B Omand ◽  
Deanne L Coppejans ◽  
Hiroshi Nagai ◽  
Geoffrey C Bower ◽  
...  

Abstract Fast-rotating pulsars and magnetars have been suggested as the central engines of super-luminous supernovae (SLSNe) and fast radio bursts, and this scenario naturally predicts non-thermal synchrotron emission from their nascent pulsar wind nebulae (PWNe). We report results of high-frequency radio observations with ALMA and NOEMA for three SLSNe (SN 2015bn, SN 2016ard, and SN 2017egm), and present a detailed theoretical model to calculate non-thermal emission from PWNe with an age of ∼1 − 3 yr. We find that the ALMA data disfavors a PWN model motivated by the Crab nebula for SN 2015bn and SN 2017egm, and argue that this tension can be resolved if the nebular magnetization is very high or very low. Such models can be tested by future MeV-GeV gamma-ray telescopes such as AMEGO.


Sign in / Sign up

Export Citation Format

Share Document