Development of algorithms for a new topological method for calculating current distribution coefficients in complex electrical networks

Author(s):  
Dauren Akhmetbaev ◽  
◽  
Abdyigali Dzhandigulov ◽  
2017 ◽  
Vol 7 ◽  
pp. 1644-1649 ◽  
Author(s):  
Dauren S. Akhmetbayev ◽  
Daurenbek A. Aubakir ◽  
Yermek Zh. Sarsikeyev ◽  
Bakhtybek A. Bainiyazov ◽  
Mikhail A. Surkov ◽  
...  

2021 ◽  
Vol 43 (2) ◽  
pp. 68-78
Author(s):  
V.O. Gurieiev ◽  
◽  
Y.M. Lysenko ◽  

Розглянуто теоретичні питання побудови топологічного методу оцінки чутливості до виявлення кібернетичних загроз в електричних мережах енергосистем за допомогою моделювання режимів роботи окремих (виділених) підсистем. Описано основні етапи побудови моделей топології енергосистем, запропоновано та реалізовано методи форму­вання інформаційних моделей об'єктів енергосистем. Досліджено методи візуалізації ре­зультатів моделювання умов виникнення кіберзагроз. Визначено способи використання запропонованого підходу до створення системи протидії кіберзагрозам в електричних мережах енергосистем і побудови сценаріїв їх ліквідації за допомогою навчального дис­танційного режимного тренажеру.


2018 ◽  
Vol 155 ◽  
pp. 01043 ◽  
Author(s):  
Arman Akhmetbayev ◽  
Dauren Akhmetbayev ◽  
Serik Zhumazhanov ◽  
Bauyrzhan Zhakishev

Classical methods for modeling the steady-state modes of complex electrical networks and systems are based on the application of nonlinear node equations. Nonlinear equations are solved by iterative methods, which are connected by known difficulties. To a certain extent, these difficulties can be weakened by applying topological methods. In this paper, we outline the theoretical foundations for the formation of the inverse form of nodal stress equations based on the topology of electrical networks and systems. A new topological method for calculating the distribution coefficients of node currents is proposed based on all possible trees of a directed graph of a complex electrical network. A complex program for calculating current distribution coefficients and forming steady-state parameters in the MATLAB environment has been developed.


2003 ◽  
Vol 33 (2) ◽  
pp. 363-370
Author(s):  
J.S. Espinoza Ortiz ◽  
Gemunu H. Gunaratne

Author(s):  
M. I. Fursanov ◽  
A. A. Zalotoy ◽  
V. V. Makarevich

. New conditions of functioning of electric power industry, tougher of requirements to technological condition of the industry predetermined transition to restructuring of electric networks on the basis of innovative structure of SMART GRID. This leads to the improvement of traditional tasks of calculation and analysis of modes and technological consumption (loss) of electricity. The authors have developed a promising method of operational calculations of technical losses of electricity in modern electrical networks of 0.38–10 kV on the basis of telemechanical graphs of loads on the head sections of distribution lines, in the area of additional installation of digital metering devices and of sources of distributed generation. The method proposes a new technique for determining the flow of electric energy in the sections of distribution lines. This is done as follows. First, according to the data of additional measurements of the network and taking into account the calculated no-load losses of transformers, electricity flows are calculated in the head sections of 6–10 kV lines. Then, according to the obtained data and the measured values of the active and reactive energy graphs of the head sections, the electric power flows targeted for their subsequent distribution over all sections of the 0.38–10 kV network are determined, taking into account the load losses of electricity and the flow distribution coefficients. The distribution coefficients are the fractions of the calculated phase loads of the 0.38 kV network of their total value. Then, according to the obtained data and the measured values of the active and reactive energy graphs on the head sections, the electric power flows intended for their subsequent distribution over all sections of the 0.38–10 kV network are determined, taking into account the load losses of electricity and the flow distribution coefficients. The basic analytical relations concerning the estimation of losses and mode as well as an example of calculation of technological consumption (loss) of electricity in the general scheme of the distribution network of 0.38; 6 and 10 kV are given. The latter is performed for a single (first)stage of load graphs.


ENTOMON ◽  
2019 ◽  
Vol 44 (1) ◽  
pp. 23-32 ◽  
Author(s):  
P. C. Sujitha ◽  
G. Prasad ◽  
R. Nitin ◽  
Dipendra Nath Basu ◽  
Krushnamegh Kunte ◽  
...  

Eurema nilgiriensis Yata, 1990, the Nilgiri grass yellow, was described from Nilgiris in southern India. There are not many published records of this species since its original description, and it was presumed to be a high-elevation endemic species restricted to its type locality. Based on the external morphology (wing patterns) as well as the male genitalia, the first confirmed records of the species from Agasthyamalais and Kodagu in the southern Western Ghats, is provided here. This report is a significant range extension for the species outside the Nilgiris, its type locality. Ecological data pertaining to this species as well as the field identification key to all known Eurema of Western Ghats are also presented.


Sign in / Sign up

Export Citation Format

Share Document