ENERGETIKA Proceedings of CIS higher education institutions and power engineering associations
Latest Publications


TOTAL DOCUMENTS

270
(FIVE YEARS 87)

H-INDEX

5
(FIVE YEARS 2)

Published By Belarusian National Technical University

2414-0341, 1029-7448

Author(s):  
V. V. Veremenyuk ◽  
V. V. Ivashechkin ◽  
O. V. Nemeravets

153 reservoirs have been created in the Republic of Belarus. During the period of passing catastrophic floods and high waters along the river, there is a risk of overflowing reservoirs, overflow of water masses through the crest of an earthen dam and flooding of significantly large areas. The destruction of the dam is accompanied by the formation of a breach and the outflow through it of an unsteady flow of water in the form of a breakthrough wave into the downstream. A breakthrough wave and catastrophic flooding of the area are the main destructive factors of hydrodynamic accidents. Calculations to determine parameters of the wave and to assess the possible consequences of flooding are necessary when drawing up operational-and-tactical plans for the prevention and elimination of emergencies in case of accidents at retaining structures, determining the probable damage from flooding of the territory in the downstream of a hydraulic structure as a result of the passage of a breakthrough wave. It is necessary to assess the flooding zone and the hydrodynamic parameters of the flow, viz. the maximum values of the depth and velocity of the flow in the zone of catastrophic flooding, the time from the beginning of the accident to the arrival of a breakthrough wave at the particular point of the terrain, the duration of flooding, the boundaries of the zone of catastrophic flooding, the hydrographic flow rate in the section of the eroded dam and the graph of the fall headwater level. The degree of reliability of predictive calculations is determined by the accuracy of the two applied mathematical models, viz.: 1) erosion of the dam; 2) the movement of the breakout wave. The analysis of the applied mathematical models shows that in all cases the hydrodynamic models based on the oneand two-dimensional equations of Boussinesq – Saint-Venant are used to calculate the movement of the breakthrough wave. Wave parameters, i. e. wave height and speed of its propagation, completely depend on the hydrograph of the discharge in the section of the eroded dam, which, in its turn, is determined by the dynamics of its erosion. The aim of the work is to develop a methodology for calculating the flooding of the downstream as a result of the destruction of a soil dam.



Author(s):  
A. N. Pekhota ◽  
B. M. Khroustalev ◽  
Minh Phap Vu ◽  
V. N. Romaniuk ◽  
E. A. Pekhota ◽  
...  

An assessment is given to the problems of urban wastewater sludge utilization in our country and abroad, with determination of formation and usage level. Global trends in the reduction of carbon dioxide emissions exacerbate the urgency of solving the designated tasks. At the same time, recently, in connection with the EU’s plans to introduce a cross-border carbon levy, it has become necessary to reduce the carbon footprint from burning traditional fuels, which is an urgent problem of modern society. One of the directions that provide a solution to this problem is the replacement of part of the hydrocarbon fuel by the consumption of multicomponent solid fuel based on the use of combustible waste that is part of the multicomponent fuel. This solid fuel can be used to meet the needs of small consumers, for example, in the autumn-summer period to generate a drying agent for the preparation of grain on the threshing-floor, in small boiler houses, in sand drying plants of locomotive depots, heat installations of hangars and workshops, as well as in other heat-generating installations operating on solid fuels. At the same time, solving the problem of reducing the carbon footprint for Belarus is closely related to another urgent task – reducing the energy component of industrial products and the environmental consequences of storing accumulated and generated waste. The paper presents the results of joint scientific research in the field of application of modern technologies and equipment using electrohydraulic treatment to reduce and minimize the level of anthropogenic and polluting substances in wastewater sludge. The described technological equipment, technology and post-treatment modes reduce the content of harmful substances in the wastewater sludge composition even with short-term treatment. An assessment of the effectiveness of the developed technology for the use of sewage sludge is given, using the method of wet multicomponent briquetting to obtain a multicomponent fuel. The presented process flow diagram of multicomponent briquetting using sewage sludge and plant-wood waste directly shows the undeniable advantages of using watered wastewater sludge as a raw material for the production of solid fuel. At the same time, the optimally selected ratio of components and moisture content of the briquetted composition solves a number of technologically difficult problems that cannot be realized using traditional briquetting technologies. The presented data of the conducted research and the developed technology make it possible to expand the area of using wastewater sludge as a secondary renewable material resource.



Author(s):  
V. D. Petrash ◽  
V. O. Makarov ◽  
A. A. Khomenko

The results of the analytical study substantiated the operating conditions for the highly efficient use of the temperature potential of seawater in heat pump heating systems (HPHS) for buildings a building with correspondingly improved environmental indicators. Based on the analysis of the regional conditions of the Odessa water area of the Black Sea, the initial parameters have been substantiated and rational modes of operation of an improved HPHS with central, decentralized or local heating of the subscriber energy carrier have been determined. As indicators for evaluating the efficiency of the HPHS operation, the conversion factor of energy flows and the specific consumption of external energy for the drive of the compressor and the circulating pump of cooled water in the operation of heat pump units were considered. For seawater in the Odessa water area of the Black Sea during the entire heating period, the following temperatures were considered as initial data for analysis: water at the inlet to the evaporator (5–10) ° C, at the outlet (1 °C); calculated temperature difference of the coolant in the heating system (50–40) °C, indoor air (20 °C); estimated outdoor temperature (–18 °C). The characteristic correspondence between the flow rates of the cooled sea water and the heated energy carrier of the heat supply system was taken into account. The prerequisites of high efficiency of the heat pump heat supply system in which the actual conversion coefficient exceeds the seasonal normalized calculated and minimum value at an outdoor temperature of (–10) °C under the limiting conditions of the monoenergy regime for both new and reconstructed buildings were substantiated. In the course of the study, it has been determined that the total specific consumption of external energy for the compressor drive and the circulation of cooled water in the operation of a heat pump unit with a characteristic ratio of water equivalents, even under the limiting conditions of the monoenergetic mode of operation of the heat supply system at an outdoor temperature of (–10) °C, are within the range of generally accepted values (w = 0.28–0.34).



Author(s):  
V. A. Prakht ◽  
V. V. Goman ◽  
A. S. Paramonov

The article focuses on the use of genetic algorithms for the design of linear induction motors. Comparison of genetic algorithm with classical methods in the context of electrical machines designing has been carried out. The results of solving an optimization problem for two designs are presented, viz. a laboratory linear induction electric motor based on a three-phase SL-5-100 inductor and a traction single-sided linear induction electric motor of an urban transport system. The optimality criterion included maximizing the power factor and efficiency, as well as the rigidity of the mechanical characteristic while ensuring a starting traction force of at least a set value. The results of optimization of such parameters of the secondary element as the width and thickness of the conductive strip as well as the thickness of the magnetic circuit are described. The relevance of the problem of optimizing the parameters of the secondary element with unchanged parameters of the inductor is due to the fact that the same inductor can be used to build various structures, while the secondary element is created for each specific application and integrated directly into the working body of the mechanism or is a driven product. To calculate the traction and energy characteristics of linear induction electric motors, an electromagnetic model based on detailed equivalent circuits was used, taking into account longitudinal and transverse edge effects and providing a calculation time for one set of parameters of about 1 s. In accordance with this model, the electric motor is reduced to a set of three detailed equivalent circuits: a magnetic circuit, primary and secondary electrical circuits. The result of the optimization of these electric motors was an increase in the efficiency by 1.6 and 1.4 %, respectively, an increase in the power factor by 0.9 and 0.2 %, and an increase in the rigidity of traction characteristics and starting traction force.



Author(s):  
A. Yu. Kapustsinski ◽  
S. V. Kanstantsinava

The article discusses and systematizes the causes of high values of short-circuit currents in electrical networks up to 1 kV and indicates their negative consequences. A brief analysis of some current limiting methods (both with and without additional investment) is given, which makes it possible to reduce the negative effects when significant short-circuit currents occur. The variants of the implementation of these current limiting methods recommended for study at the design stage or when replacing equipment that has exhausted its resource, are considered. The advantages and disadvantages of the methods of limiting short-circuit currents described in the article are indicated. Options for connecting equipment with low power consumption to nodes of the electrical network up to 1 kV with high values of short-circuit currents are also considered. Special attention is paid to current-limiting protection devices, a detailed description of the design of some of them is given, the advantages of their use in comparison with other current-limiting methods are indicated, the corresponding graphs of the limitation of the periodic component of the short-circuit current, shock short-circuit current and thermal pulse are presented. Based on the analysis of graphic materials, the issue of ensuring the selectivity of protections is considered. The degree of prevalence of equipment with the property of current limitation is determined. A method for determining selective current-limiting protection devices is given, viz. the method of energy selectivity, the corresponding graphs for determining energy selectivity are presented. The physics allowing to determine the degree of efficiency of limiting the short-circuit current is described. Recommendations on the use of current-limiting equipment are proposed.



Author(s):  
V. V. Opiatiuk ◽  
I. L. Kozlov ◽  
V. I. Skalozubov ◽  
I. A. Ostapenko

This article considers the principal theoretical possibility of regulating a nuclear power reactor under changing operating modes conditions when external periodic disturbances take place in conditions of changing the operating mode. By the external periodic perturbation a downward change in the conditions of the heat sink was meant. The magnitude of the changes was preliminarily calculated in such a way that the operating conditions of the power plant did not exceed the boundaries of the safe operation zone of the reactor. In the case of approaching the operation parameters to the critical ones, the heat sink was increased until the working conditions returned to their previous state. In this work the amplitude frequency response of a non-linearly enhanced system in the nuclear power plant operating conditions when non-linearly reacting to external periodic influences has been studied. The external cyclic disturbances effect produced on the reactor that initially existed under stationary operating conditions has been considered. The research was carried out by numerical simulation of the competition between processes occurring in a nuclear power plant and determined by the system’s reaction time and relaxation time while responding to periodic external influences. Calculations of the relaxation time dependence on the fixed frequency-revealing external influence’s temperature are presented. Also, the relaxation time dependence on the frequency of external influence at a fixed temperature for systems with various relaxation periods was calculated. It is determined that when the dependence between system temperature and the external influence time is calculated, there exists a wide range of possible frequency control. To evaluate the behavior of a nuclear power reactor under conditions of operating modes changes, a fundamental physical mathematical model of the reactor’s state under external harmonic influence is presented. It is based on the nonlinear Riccati equation. The external harmonic effect was simulated by changing the heat supply and heat removal conditions near the critical point.



Author(s):  
Yu. V. Rumiantsev ◽  
F. A. Romaniuk

Recently, there has been an increased interest in the use of artificial neural networks in various branches of the electric power industry including relay protection. Аrtificial neural networks are one of the fastest growing areas in artificial intelligence technology. Recently, there has been an increased interest in the use of аrtificial neural networks in the electric power engineering, including relay protection. Existing microprocessor-based relay protection devices use a traditional digital signal processing of the monitored signals which is reduced to a multiplying the values of successive samples of the monitored current and voltage signals by predetermined coefficients in order to calculate their RMS values. In this case, the calculated RMS values often do not reflect the real processes occurring in the protected electrical equipment due to, for example, current transformer saturation because of the DC component presence in the fault current. When the current transformer is saturated, its secondary current waveform has a characteristic non-periodic distorted form, which is significantly differs from its primary (true) waveform, which causes underestimation of the calculated RMS value of the secondary current compared to its true value. In its turn, this causes to a trip time delay or even to a relay protection devices operation failure. The use of аrtificial neural networks in conjunction with a traditional digital signal processing provides a different approach to the functioning of both the measuring and logical parts of the microprocessor-based relay protection devices, which significantly increases the speed and reliability of such relay protection devices in comparison with their traditional implementation. A possible application of the аrtificial neural networks for the relay protection purposes is the fault occurrence detection and its type identification, current transformer secondary current waveform distortion restoration due to its saturation up to its true value, detection the distorted and undistorted sections of the current transformer secondary current waveform during its saturation, primary power equipment abnormal operating modes detection, for example, power transformer magnetizing current inrush. The article describes in detail the stages of the practical implementation of the аrtificial neural networks in the MATLAB-Simulink environment by the example of its use to restore the distorted current transformer secondary current waveform due to saturation.



Author(s):  
A. Yu. Kapustsinski ◽  
S. N. Kаnstantsinava

The paper deals with the problem of increasing the efficiency of the functioning of electric networks up to 1 kV, namely, the possibility of increasing the sensitivity of protections in networks up to 1 kV, which helps to reduce the protection response currents and, accordingly, reduce the cross-section of cable and wire products. The topicality of this problem is shown and the research tasks are defined. Much attention is paid to the concept of selectivity; attention is also paid to the concepts of full and partial selectivity. “Which protective devices can be considered selective?” is a question that is considered and worked out in sufficient depth in the paper. The negative phenomena that occur when ensuring the selectivity of protections in networks up to 1 kV are systematized and described in detail. Based on a comparative analysis of the parameters of circuit breakers with release tripping devices of various types, a solution to this problem is proposed by using circuit breakers with microprocessor and semiconductor release tripping devices. Additional advantages of microprocessor-based circuit breakers are considered and indicated, as well as their disadvantages are indicated, too. The main expected positive effects from the use of circuit breakers with microprocessor release tripping devices are listed, taking into account the fact that this type of circuit breakers is considered as a complex of devices replaced by it. The article can be recommended to employees of electric power specialties working with networks up to 1 kV.



Author(s):  
A. M. Volk ◽  
A. I. Vilkotsky ◽  
O. N. Pyzhcova

This paper considers the possibility of using vortex devices for interphase interaction while carrying out various physical and chemical processes in the chemical, food, gas production, construction and other industries. In the processes of mass transfer, one or several distributed components perform the transition from one phase to another through the active surface of their interface. To perform the implementation of these processes in absorbers, rectifiers, adsorbers, extractors effectively, the developed surface of the interacting phases acquire s a particular significance. Most of the chemical reactions in reaction devices and heterogeneous media occur when the initial distributed substances are supplied to the reaction zone and when the resulting products are removed from the chemical interaction zone through the phase interface. The processes under consideration are also used in solving environmental problems, viz. for sanitary cleaning of ventilation gases, wet cleaning of emissions. During evaporation, absorption, rectification, wet cleaning of gases and other processes, the problem of preventing the entrainment of liquid droplets with the gas flow is of great importance. One of the designs of a rotary multistage mass transfer apparatus is considered which makes it possible to achieve a finely dispersed liquid spray, uniform in height, with an ascending cross-flow of gas. The diagrams of installations for carrying out the experiment are given. On the basis of experimental studies, the dependence of the average diameter of dispersed liquid droplets on the geometric and hydrodynamic parameters has been obtained. The dispersed composition is described and dependences are given for determining the main characteristics used in physicochemical processes. The theoretical calculation of the movement of particles of the dispersed phase in the working volume of the apparatus at different flow rates of liquid and gas has been carried out. Theoretical and experimental methods were used to estimate the carryover of the liquid phase, an analysis of the process was carried out, and practical recommendations were given.



Author(s):  
A. S. Fikov

Abstaract. An analytical solution of a system of partial differential equations describing the unsteady isothermal flow of real gases in gas pipelines is considered. Such a problem arises when studying the regularity of alterations in the instantaneous values of pressure and gas flow in main gas pipelines, for example, during startups and shutdowns of large gas consumers. Meanwhile, transients are not necessarily of a pronounced oscillatory nature, despite the fact that they are described by periodic functions. In the course of the research, the task was set to obtain a mathematical model of the process taking into account the inertial term of the equation of motion, the neglect of which is possible only if the friction losses are exceeded by 3.5–4 times over the shock pressure. An important feature of the solution that have been found is its universality, which makes it possible to significantly reduce labor costs when using it to find partial solutions to practical problems that differ in boundary conditions. The boundary conditions of the first kind are given as an arbitrary function of both the gas flow rate and its pressure. The solution is based on the widely used method of separation of Fourier variables. In order to simplify the calculations, the original differential equation is transformed in such a way that the boundary conditions acquire the property of homogeneity. It has been determined that the requirements that the boundary conditions are equal to zero at the initial moment of time introduced into the solution make it possible to obtain a concise record of the obtained analytical model, but do not limit the area of the use of the model with a surge change in the gas flow rate or pressure. The obtained analytical model of unsteady gas flow makes it possible, without using the Duhamel integral, to find analytical solutions under more complex boundary conditions than the flow rate jump. At the same time, the solutions found completely coincide with the solutions based on the Duhamel integral, but in the course of the solution that we have found it is possible to avoid integration, which has a positive effect on the applicability of this approach in the practice of engineering calculations.



Sign in / Sign up

Export Citation Format

Share Document