Teaching of Nuclear Power Plant Safety at the National Technical University of Ukraine Within the New Course in Safety Culture

Author(s):  
Vasilij V. Begun ◽  
Sergij V. Begun ◽  
Olena O. Kilina

The necessity of safety analysis methods and probable scenarios of accidents teaching in the education of experts for nuclear industry in Ukraine has been realised only after the Chernobyl accident. We developed the content of the first educational course in probabilistic safety analysis in 1995 based on the experience of the countries having developed nuclear power, the USA first of all, and on the training course of the Idaho National Laboratory. After this in 1996 the new course in probabilistic safety analysis of nuclear power plant (NPP) was adopted at our university. The new educational course in safety for students was developed and adopted in 2009 educational year - “Safety culture at nuclear installations of Ukraine”. Education and training in safety culture in higher educational institutions and in the nuclear power plants is a part of the general modern process of maintenance of safety, it is recommended by IAEA standards. The principles of safety culture are taken as a basis of the modern concept of safety of nuclear power plants. This work has received a positive appreciation from the management of departments of safety and training of the personnel of operating organization National Nuclear Energy Generating Company Energoatom (NNEGC Energoatom) and from other leaders of nuclear industry. The content of this educational course was discussed at the international scientific conferences on safety culture in 2008 and 2010, and was preliminary printed in the professional journal «Nuclear and radiation safety». The purposes of education have been defined as a survey, generalizing course on safety of the NPP with an allocation of safety issues on the foreground. Practical questions of the equipment and NPP systems work, their interaction in emergencies and the role of the human-operator are studied. The procedure of failure analysis at NPP is studied. Students analyze equipment work, root and direct causes of incidents. Methods of estimation of safety conditions based on observable operational indicators are studied. Parameters, variables and indicators of safety culture are studied. As a result of gained experience we have come to the conclusion about high advisability of educational courses in safety for students. Specially formed knowledge and education in the field of safety from a student’s bench are the basis of safety culture of the future nuclear industry expert.

Author(s):  
Zijian Wang ◽  
Shanfang Huang ◽  
Xiaoyu Guo ◽  
Kan Wang

At present, there are hundreds of nuclear power plants in operation around the world. Anti-nuclear movements continue in many places, although the nuclear power plants have good operating records. It has some factors, and the first factor that the public knows little about nuclear industry, results in regarding the nuclear power plant mysterious. This condition relates to destructive scene by nuclear weapon with nuclear industry, deeming it unacceptable to take this risk. Secondly, construction of nuclear power plant and off site emergency may occupy large land. The public hopes to be rewarded more to offset the risk by their imagination. Last, it relates to the political environment of one country. Every country has its own situation, so the strategies of developing nuclear power plant are widely different. The public is not familiar with other nuclear engineering projects except nuclear power plants, and hence the boycott happens more frequently. Sino-French cooperation on nuclear fuel cycle project is the first large-scale commercial spent fuel reprocessing plant, which is the biggest cooperative project between China and France until now. AREVA is responsible for technology, and CNNC is responsible for building. Spent fuel reprocessing is the most important part of nuclear fuel cycle back end, which separates uranium and plutonium from spent fuel, and manufactures MOX fuel with recycled resources for using in nuclear reactor again. This will make the best use of the uranium resources. After that process, the fission products needed to be disposed reduce significantly. And it is good for environmental protection. The public protest happened in one of the candidate sites, when CNNC carried out the preliminary work of site selection. For meeting the enormous energy demands, the fossil energy may be exhausted in the future due to the greenhouse gases emission. Chinese government speeds up the development of new energy. Nuclear energy is the only technology with no emission of greenhouse gases and will be rapidly developed. Along with the nuclear power units continuing to increase, they become the critical factors in restricting the sustainable development of nuclear energy. That is efficient utilization of uranium resources, spent fuel intermediate storage, reprocessing, and geologic disposal of high level radioactive waste. To this project, it not only has a great current demand, but also closely relates to transition of energy structure. The public has different views in the project progressing, which results in wide concern and discussion. The article took this event for example, and analyzed the reason from all directions. Besides, the author put forward own views for the public acceptance events about nuclear engineering projects except nuclear power plant.


2021 ◽  
Author(s):  
Li Liang ◽  
Pan Rong ◽  
Ren Guopeng ◽  
Zhu Xiuyun

Abstract Almost all nuclear power plants in the world are equipped with seismic instrument system, especially the third generation nuclear power plants in China. When the ground motion measured by four time history accelerometers of containment foundation exceeds the preset threshold, the automatic shutdown trigger signal will be generated. However, from the seismic acceleration characteristics, isolated and prominent single high frequency will be generated the acceleration peak, which has no decisive effect on the seismic response, may cause false alarm, which has a certain impact on the smooth operation of nuclear power plant. According to the principle of three elements of ground motion, this paper puts forward a method that first selects the filtering frequency band which accords with the structural characteristics of nuclear power plants, then synthesizes the three axial acceleration time history, and finally selects the appropriate acceleration peak value for threshold alarm. The results show that the seismic acceleration results obtained by this method can well represent the actual magnitude of acceleration, and can solve the problem of false alarm due to the randomness of single seismic wave, and can be used for automatic reactor shutdown trigger signal of seismic acceleration.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022020
Author(s):  
Jiahuan Yu ◽  
Xiaofeng Zhang

Abstract With the development of the nuclear energy industry and the increasing demand for environmental protection, the impact of nuclear power plant radiation on the environment has gradually entered the public view. This article combs the nuclear power plant radiation environmental management systems of several countries, takes the domestic and foreign management of radioactive effluent discharge from nuclear power plants as a starting point, analyses and compares the laws and standards related to radioactive effluents from nuclear power plants in France, the United States, China, and South Korea. In this paper, the management improvement of radioactive effluent discharge system of Chinese nuclear power plants has been discussed.


2018 ◽  
Vol 4 (4) ◽  
pp. 251-256 ◽  
Author(s):  
Sergey Shcheklein ◽  
Ismail Hossain ◽  
Mohammad Akbar ◽  
Vladimir Velkin

Bangladesh lies in a tectonically active zone. Earlier geological studies show that Bangladesh and its adjoining areas are exposed to a threat of severe earthquakes. Earthquakes may have disastrous consequences for a densely populated country. This dictates the need for a detailed analysis of the situation prior to the construction of nuclear power plant as required by the IAEA standards. This study reveals the correlation between seismic acceleration and potential damage. Procedures are presented for investigating the seismic hazard within the future NPP construction area. It has been shown that the obtained values of the earthquake’s peak ground acceleration are at the level below the design basis earthquake (DBE) level and will not lead to nuclear power plant malfunctions. For the most severe among the recorded and closely located earthquake centers (Madhupur) the intensity of seismic impacts on the nuclear power plant site does not exceed eight points on the MSK-64 scale. The existing predictions as to the possibility of a super-earthquake with magnitude in excess of nine points on the Richter scale to take place on the territory of the country indicate the necessity to develop an additional efficient seismic diagnostics system and to switch nuclear power plants in good time to passive heat removal mode as stipulated by the WWER 3+ design. A conclusion is made that accounting for the predicted seismic impacts in excess of the historically recorded levels should be achieved by the establishment of an additional efficient seismic diagnostics system and by timely switching the nuclear power plants to passive heat removal mode with reliable isolation of the reactor core and spent nuclear fuel pools.


Author(s):  
Esko Pekkarinen

Modernisation of control rooms of the nuclear power plants has been a major issue during the last few years. With this as a basis, the BWR plants in Sweden and Finland funded, in co-operation with the Halden Project, an experimental HAMBO BWR simulator project based on the Forsmark 3 plant in Sweden. VTT Energy in Finland developed the simulator models for HAMBO with the aid of their APROS tool, while the operator interface was developed by the Halden Project. The simulator and its performance have been described in other publications [1, 2]. On July 25th 2006 there was a short circuit at Forsmark 1 nuclear power plant when manoeuvring equipment in the 400kV-switch yard. Due to the short circuit, the plant suffered an electrical disturbance that led to scram and failure of two out of four diesel generators. The purpose of the study carried out at VTT in 2007 was to assess the capabilities of the HAMBO BWR simulator to handle Forsmark 1 type of events in different nuclear power plants (Forsmark 3 in this case). The Forsmark 1 incident showed (among other things) that the intention to protect certain components (in this case the UPS-system) can in certain situations affect negatively to the safety functions. It is concluded that most of this type of BWR transients may be simulated to a certain extent using the existing HAMBO- and APROS- models. A detailed modelling of the automation and electric systems is required sometimes if the complex interplay between these systems and the process is to be predicted reliably. The modelling should be plant specific and level of detail should be assessed case-by-case (i.e. what kind of transient is in question, what systems are available, what is the main purpose of the analyses etc.). The thermal-hydraulic models of the APROS-code seem to replicate well the real behaviour of thermal-hydraulic process provided that there is enough information about the transient in consideration.


Author(s):  
Walter Krämer ◽  
Gerhard Arminger

SummaryFor decades, there has been a heated debate about whether or not nuclear power plants contribute to childhood cancer in their respective neighbourhoods, with statisticians testifying on both sides. The present paper points to some flaws in the pro-arguments, taking a recent study prepared for the political party “Bündnis 90 /Grüne” as a specimen. Typical mistakes include an understatement of the size of tests of significance, disregard of important covariates and extreme reliance on very few selected data points.


2012 ◽  
Vol 260-261 ◽  
pp. 103-106
Author(s):  
Yi Chun Lin ◽  
Yung Nane Yang

The ripples of the tsunami crisis in Japan triggered introspections of nuclear plant safety issues in the worldwide. Many countries have claimed the suspension of nuclear power plants. However, some countries such as Taiwan, under nearly 99% energy is exported, the disasters force government and citizen to face the importance of nuclear safety, especially the neighborhoods nearby the nuclear power plants. We have to face the nuclear safety since there is no other alternative energy presently. The 3rd nuclear power plant located in the south of Taiwan, which has the same geographic features with Fukushima, Japan. Presently, there is no precedent in Taiwan of precaution and rescue team and civil supervised mechanic on nuclear security issue. This paper will review according to transparent information, public participation and cross-organization cooperation to propose the execution and work division principles, including information monitor, educational propagation, hide and evacuation, emergence aid and care, rear and refuge service. The ultimate target is to establish self-governance inside nearby neighborhood to confront nuclear disaster at the critical moment.


Author(s):  
Jean-Jacques Grenouillet

Nowadays, decommissioning of nuclear power plants has become a key issue for nuclear industry in Europe. The phasing out of nuclear energy in Germany, Belgium and Sweden, as well as the early closure of nuclear units in applicant countries in the frame of EU enlargement, has largely contributed to consider decommissioning as the next challenge to face. The situation is slightly different in France where nuclear energy is still considered as a safe, cost-effective and environment friendly energy source. Electricite´ de France (EDF) is working on the development of a new generation of reactor to replace the existing one and erection of a new nuclear power plant could start in the next few years. Nevertheless, to achieve this objective, it will be necessary to get the support of political decision-makers and the acceptance of public opinion. Due to the growing concern of these stakeholders for environmental issues, their support can only be obtained if it is possible to demonstrate that nuclear energy industry will not leave behind unsolved issues that will be a burden to the next generations. In this context decommissioning of the first generation of EDF NPPs constitutes a prerequisite for the erection of a new type of nuclear power plant. This paper will present the programme defined by EDF for the decommissioning of its nine already shutdown reactors (Fig. 1). The reasons of the recent evolution of EDF decommissioning strategy will be explained and the key issues that will contribute to the successful implementation of this programme will be addressed. Finally, what has been achieved on sites so far and major planned activities will be described.


Sign in / Sign up

Export Citation Format

Share Document