Nuclear Safety Culture Construction in Nuclear Power Design Enterprise on the Perspective of Knowledge Workers in China

Author(s):  
Qiu Li ◽  
Jun Wu

Design plays a leading role in the whole life cycle of nuclear power production, including site selection, design, manufacture, construction, operation and decommission. The quality of the design products directly affects the intrinsic safety of the nuclear power plant. The quality of final products in design process depends on a number of factors, including not only technology capability, but also the improvement of design quality assurance system, the capability and responsibility of the designers to nuclear safety, the thinking mode and working habit of the designers, and the extent of complete implementation of the review systems at all levels. These factors consequently affect the level of safety of the nuclear power plant. Nuclear power design industry is typical knowledge-intensive business, in which knowledge workers consist of essential assets to the enterprise. The article analyzes the asset structure and staff structure of nuclear power design industries in contrast with other industries, and discusses the contribution of knowledge workers to the development of the enterprise. This paper also tries to document the characteristics of knowledge workers in nuclear power enterprises. They are characteristic of superior income and welfare, high level education and ability, high specialization, and tacit knowledge. Based on these analyses, the article addresses four major principles in nuclear safety culture construction for nuclear power design enterprises as follows: 1. adopt motivation factors as major incentives, 2. emphasize self management, 3. management by objectives (MBO), 4. team work.

Author(s):  
Lei Wan ◽  
Guiyong Li ◽  
Min Rui ◽  
Yongkang Liu ◽  
Jue Yang

A floating nuclear power plant (FNPP) with small modular reactor (SMR) is a combination of a civilian nuclear infrastructure and an offshore installation, which is defined as a floating nuclear facility. The article draws the lessons from studying of the engineer combination like Floating Production Storage and Offloading (FPSO) under the regulation of several government departments. It puts forward recommendations for license application and government regulation as follows in consideration with current license application for nuclear power plant and ship survey. A FNPP shall follow the requirements of construction, fueling and operation for civil nuclear installation combined with ship survey. Application is submitted to nuclear safety regulator for construction permit, while the design drawings shall be submitted to department of ship survey which checks the drawings whether meet the requirements of ship survey, considering some nuclear safety needs. The result of ship survey shall be represented in the safety analysis reports. The construction and important devices manufacturing shall be under the supervision of nuclear installation regulators and ship survey departments. In conclusion, National Nuclear Safety Administration (NNSA) and Maritime Safety Administration of the People’s Republic of China (MSA) shall establish united supervisory system for SMR on sea in China. It is suggested that NNSA is in charge of the overall safety of a FNPP, while MSA is responsible of the ship survey. The operator shall undertake obligation of a FNPP and evaluate the ship cooperating with experienced agency. It is suggested that government departments build the mutual recognition agreement of safety review. It is better to solve the vague questions by coordination.


2012 ◽  
Vol 260-261 ◽  
pp. 103-106
Author(s):  
Yi Chun Lin ◽  
Yung Nane Yang

The ripples of the tsunami crisis in Japan triggered introspections of nuclear plant safety issues in the worldwide. Many countries have claimed the suspension of nuclear power plants. However, some countries such as Taiwan, under nearly 99% energy is exported, the disasters force government and citizen to face the importance of nuclear safety, especially the neighborhoods nearby the nuclear power plants. We have to face the nuclear safety since there is no other alternative energy presently. The 3rd nuclear power plant located in the south of Taiwan, which has the same geographic features with Fukushima, Japan. Presently, there is no precedent in Taiwan of precaution and rescue team and civil supervised mechanic on nuclear security issue. This paper will review according to transparent information, public participation and cross-organization cooperation to propose the execution and work division principles, including information monitor, educational propagation, hide and evacuation, emergence aid and care, rear and refuge service. The ultimate target is to establish self-governance inside nearby neighborhood to confront nuclear disaster at the critical moment.


Author(s):  
Juan Luo ◽  
Jiacheng Luo ◽  
Lei Sun

Nuclear class equipment should be assessed for seismic safety before they are used in nuclear power plant. According to nuclear safety codes and regulations, all seismic category I equipments shall be designed enduring safety shutdown earthquake (SSE). That is, the stress evaluation needs to be accomplished for those structures. For some components, the deformation evaluation needs to be performed as well to assure the function integrity of the equipment. In this paper, the seismic analysis for an explosion-proof valve used in nuclear power plant, which exactly belongs to seismic category I equipment, has been conducted based on finite element method. The natural frequency, vibration mode and seismic response of the structure have been obtained through calculation, and the stress and deformation under the combined loadings of gravity, internal pressure, blast and seismic load have been evaluated according to ASME AG-1. The bolts of the structure have been qualified according to ASME III-NF as well. The results show that the design of the explosion-proof valve is in compliance with the requirement of corresponding nuclear safety standards.


Hydrobiologia ◽  
1992 ◽  
Vol 246 (2) ◽  
pp. 129-140 ◽  
Author(s):  
Aldo A. Mariazzi ◽  
Jorge L. Donadelli ◽  
Patricia Arenas ◽  
Miguel A. Di Siervi ◽  
Carlos Bonetto

Author(s):  
Hideo Machida ◽  
Norimichi Yamashita ◽  
Shinobu Yoshimura ◽  
Genki Yagawa

This study was performed to clarify the effects of flaw detection probability on piping reliability of a nuclear power plant. Stress-corrosion cracking (SCC) is still sporadically detected in austenitic stainless steel piping in Japanese BWR plants. The suitability for continued service of cracked pipes is basically evaluated by using the “Rules on fitness -for service for nuclear power plants.” Here future inspection rules are employed. However, the possibility of undetection of existing cracks and that of inaccurate measurements cannot be eliminated in UT-based inspection. Thus a probabilistic fracture mechanics (PFM) analysis was carried out referring measured flaw size, and the reliability of piping was evaluated considering the possibility of undetection of existing cracks and that of inaccurate measurements. The results of the analysis indicate that, if the interval and quality of the inspection are maintained at a certain specified level, the possibility of undetection of existing cracks and that of inaccurate measurements less affect failure probability.


Author(s):  
Takashi Hasebe ◽  
Nobuki Tamai ◽  
Syohei Tatsuno ◽  
Yuma Itahashi ◽  
Kiyoaki Tokunou

In Radiography Testing (RT) that is an important nondestructive testing as the quality control, the digital imaging technology rapidly provides advancement. The digital imaging technology is more effective than the film method on an environmental side and the cost side, such as unnecessary of the film storage and a chemical treatment by digital output. Especially, in the medical field, the advancement by the digitalized image data processing is remarkable, and it is attempted the upgrade of the inspection technology. However, RT that uses the high-energy radiation and the fast film is a main current in an industrial field, and it has not arrived at digitalization yet. Therefore, in an industrial RT, digitalization is expected and the examination standardization is required also in ASME, JSME, and JIS. We, Mitsubishi Heavy Industries (MHI), studied an applicability of Computed Radiography (CR) to Non-Destructive Examination (NDE) for welds of piping and thick wall component in nuclear power plant. At first, MHI researched image quality of CR for piping. In this research, it was confirmed that the images of testing results by CR method are equivalent to that by film method in terms of visibility of IQI (Image Quality Indicator) and detection performance of welding defects. And we founded the optimized shooting conditions for piping. Second, MHI researched image quality of CR for thick wall component. In the result, the noise shown in fig.1 was occurred on CR image when the thick wall component such as pressure vessel is radiographed with high energy. It is speculated that the primary cause of this noise is the scattered X-ray effect (shown in fig.2). Therefore it is necessary to investigate the effect of the scattered X-ray on CR image. In this study, to reduce the scattered X-ray effect on CR image, we investigated the effect of 1) screen, 2) screen + filter on image quality of CR for thick wall component. And we studied the optimized shooting conditions and parameters for thicker component than piping to aim for more application. Finally, we applied CR to the pipings and components for nuclear power plant with the optimized shooting conditions and parameters.


2021 ◽  
Author(s):  
T. Schneider ◽  
J. Lochard ◽  
M. Maître ◽  
N. Ban ◽  
P. Croüail ◽  
...  

Lessons from the Fukushima-Daiichi nuclear power plant accident emphasize the difficulties for restoring the socio-economic activities in the affected areas. Among them, a series of radioligical protection challenges were noted, in particular concerning the protection of employees, the securing of the production and the guarantee provided to consumers of the radiological monitoring of products to restore their confidence. Based on case studies reporting the experience of employers deploying their activities in affected areas, an analysis of these radiological protection challenges has been performed. Characterizing the radiological situation was not always straightforward for the managers. With the help of radiological protection experts, protective actions have been identified and specific efforts have been devoted to provide information to employees and their families helping them to make their own judgement about the radiological situation. Respecting the decisions of employees and developing a radiological protection culture among them have proved to be efficient for restoring the business activities. Continuing or restoring the production not always manageable. It requires to develop dedicated radiological monitoring processes to ensure the radiological protection of workers and the quality of the production. Re-establishing the link with the consumers and organising the vigilance on the long-term were necessary for companies to maintain their production or develop new ones. Deploying a socio-economic programme for ensuring the community resilience in affected areas requires the adoption of governance mechanisms respecting ethical values to ensure the overall objective of protecting people and the environment against the risks of ionizing radiation and contributing to provide decent living and working conditions to the affected communities. It is of primary importance to rely on the involvement of local communities in the elaboration and deployment of the socio-economic activities with due considerations for ensuring the integrity of the communities, and respecting their choices.


Sign in / Sign up

Export Citation Format

Share Document