scholarly journals High Gain of UWB Planar Antenna Utilising FSS Reflector for UWB Applications

2022 ◽  
Vol 70 (1) ◽  
pp. 1419-1436
Author(s):  
Ahmed Jamal Abdullah Al-Gburi ◽  
Imran Bin Mohd Ibrahim ◽  
Zahriladha Zakaria ◽  
Badrul Hisham Ahmad ◽  
Noor Azwan Bin Shairi ◽  
...  
Author(s):  
Manohar Golait ◽  
Manish Varun Yadav ◽  
Balasaheb H. Patil ◽  
Sudeep Baudha ◽  
Lokesh Kumar Bramhane

Abstract A compact ultra-wideband (UWB) square and circular slot ground plane planar antenna with a modified circular patch for UWB communication is presented. This antenna has a low reflection coefficient and high gain in the range of 8.94 GHz, starting from 2.85 to 11.79 GHz. The proposed antenna demonstrates UWB behavior with electrically small dimensions of 0.18 λ0×0.14 λ0×0.015 λ0 (λ0 is the free-space wavelength at 2.85 GHz). The fractional bandwidth of the antenna is 122.1%, with stable radiations. The antenna's maximum gain stands at 2.79 dBi, and the antenna's peak efficiency stands at 72%, respectively. It is lightweight, compact, and easy to manufacture. Hence, it can be used for the complete range of UWB applications and covers Wi-Max/WLAN/ X-Band and Ku-Band.


Author(s):  
Sheng Ye ◽  
Junyi Hu ◽  
Liang Li ◽  
Yanbing Ma ◽  
Kun Qin

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Mustafa İlarslan ◽  
A. Serdar Türk ◽  
Salih Demirel ◽  
M. Emre Aydemir ◽  
A. Kenan Keskin

Ultrawideband (UWB) antennas are of huge demand and Vivaldi antennas as well as the TEM horn antennas are good candidates for UWB applications as they both have relatively simple geometry and high gain over a wide bandwidth. The aim of this study is to design a compact antenna that achieves maximum gain over a bandwidth between 1.5 and 10.6 GHz while minimizing its size. The idea is to make use of combined respective advantages of Vivaldi and TEM horn antennas to achieve the desired goals by shaping the TEM horn antenna to look like a Vivaldi antenna. The antenna structure is modified by a dielectric load in the center to increase the gain bandwidth. It is placed in a surrounding box made of PEC material to reduce the undesired side lobes and to obtain more directive radiation pattern. The simulations are performed by using the CST STUDIO SUITE electromagnetic (EM) simulation software and they are later verified by the actual measurements. The Vivaldi shaped partially dielectric loaded (VS-PDL) TEM horn antenna is proposed as a compact UWB antenna for systems using the newly established UWB band and also for the communication systems of popular bands like ISM, Wi-Fi, and GSM.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Thomas Kaufmann ◽  
Akhilesh Verma ◽  
Van-Tan Truong ◽  
Bo Weng ◽  
Roderick Shepherd ◽  
...  

A planar antenna for ultra-wideband (UWB) applications covering the 3.1–10.6 GHz range has been designed as a test bed for efficiency measurements of antennas manufactured using polymer conductors. Two types of conductive polymers, PEDOT and PPy (polypyrrole), with very different thicknesses and conductivities have been selected as conductors for the radiating elements. A comparison between measured radiation patterns of the conductive polymers and a copper reference antenna allows to estimate the conductor losses of the two types of conductive polymers. For a 158 μm thick PPy polymer, an efficiency of almost 80% can be observed over the whole UWB spectrum. For a 7 μm thick PEDOT layer, an average efficiency of 26.6% demonstrates, considering the room for improvement, the potential of this type of versatile materials as flexible printable alternative to conductive metallic paints. The paper demonstrates that, even though the PEDOT conductivity is an order of magnitude larger than that of PPy, the thicker PPy layer leads to much higher efficiency over the whole UWB frequency range. This result highlights that high efficiency can be achieved not only through high conductivity, but also through a sufficiently thick layer of conductive polymers.


Sign in / Sign up

Export Citation Format

Share Document