fractional bandwidth
Recently Published Documents


TOTAL DOCUMENTS

201
(FIVE YEARS 93)

H-INDEX

12
(FIVE YEARS 5)

Author(s):  
Badr Nasiri ◽  
Ahmed Errkik ◽  
Jamal Zbitou

In this work, we present a novel miniature band stop filter based on double negative metamaterial, this circuit is designed on a low-cost substrate FR-4 of relative permittivity 4.4 and low tangential losses 0.002. The proposed filter has a compact and miniature size of 15 mm in length and 12mm in width without the 50 Ω feed lines. The resonator was studied and analyzed with a view to achieving a band-stop behavior around its resonant frequency. The band-stop characteristics are obtained by implementing the metamaterial resonator on the final structure. The obtained results show that this microstrip filter achieves fractional bandwidth of 40% at 2 GHz. Furthermore, excellent transmission quality and good attenuation are achieved. This filter is an adequate solution for global system for mobile communications (GSM).


2022 ◽  
Vol 12 (2) ◽  
pp. 875
Author(s):  
Nan Zhang ◽  
Xiaolong Wang ◽  
Chunxi Bao ◽  
Bin Wu ◽  
Chun-Ping Chen ◽  
...  

In this paper, a novel synthetization approach is proposed for filter-integrated wideband impedance transformers (ITs). The original topology consists of N cascaded coupled line sections (CLSs) with 2N characteristic impedance parameters. By analyzing these characteristic impedances, a Chebyshev response can be derived to consume N + 2 design conditions. To optimize the left N − 2 variable parameters, CLSs were newly substituted by transmission lines (TLs) to consume the remaining variable parameters and simplify the circuit topology. Therefore, there are totally 2N − N − 2 substituting possibilities. To verify the proposed approach, 25 cases are listed under the condition of N = 5, and 7 selected cases are compared and discussed in detail. Finally, a 75–50 Ω IT with 100% fractional bandwidth and 20 dB bandpass return loss (RL) is designed and fabricated. The measured results meet the circuit simulation and the EM simulation accurately.


Author(s):  
Navneet Singh ◽  
◽  
Dr. Amit Jain ◽  
Dr. Dinesh Kumar Singh ◽  
◽  
...  

In this article, a single port with truncated corner and common T-shaped notch loaded microstrip patch antenna for bandwidth enhancement is presented which is useable for mid band of 5G applications. The design of this prototyped antenna is obtained by loading truncated corner and T-shaped notch on rectangular patch antenna having 50 Ω microstrip line feed. The optimized antenna 5 is selected as proposed antenna at design frequency 3 GHz among antenna 1- antenna 5after study of simulated results through IE3D Mentor Graphics simulation software. Proposed antenna covers a wide bandwidth from 2.39 to 4.04 GHz and fractional bandwidth of 51.3% with pair of resonance frequency having return loss of -23.38 dB and -29.65 dB respectively.


2021 ◽  
Author(s):  
Minahil Shirazi ◽  
David Chatzichristodoulou ◽  
Abdul Quddious ◽  
Nosherwan Shoaib ◽  
Dimitra Psychogiou ◽  
...  

Author(s):  
S. Jameson ◽  
N. Buadana ◽  
Z. Eliatim ◽  
I. Sarousi ◽  
A. Wolfman ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Djamila ZIANI ◽  
Sidi Mohammed MERIAH ◽  
Foued DERRAZ ◽  
Lotfi MERAD

Abstract In this paper, we propose a Compact Asymmetrically Slotted Antipodal Vivaldi Antenna (CAS-AVA) design for MIMO imaging systems. The structure has the ability to extend the antenna bandwidth in low-end frequencies achieving a fractional bandwidth of 123,32 % (4.743-20 GHz). Good results are obtained in term of return loss, radiation pattern and gain. A time-domain study has been also performed to characterize the antenna behavior in case of an UWB pulse is used. To further validate our design, an application for MIMO imaging system is also proposed and evaluated. The antenna performances demonstrate that it is a good candidate for microwave imaging applications.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yi-jun Guan ◽  
Yong Ge ◽  
Hong-xiang Sun ◽  
Shou-qi Yuan ◽  
Yun Lai ◽  
...  

We report, both theoretically and experimentally, a type of ultra-thin metasurface-based low-frequency sound absorber with bandwidth optimization. Such a metasurface unit consists of an ultrathin resonator (thickness∼1/90 wavelength) with a circular hole on the upper panel and four narrow slits inside a multiple-cavity structure. Eigenmode simulations of the unit show rich artificial Mie resonances, in which a type of monopolar Mie resonance mode can be obtained at 238.4 Hz. Based on the excitation of the monopolar mode, we can realize the near-perfect low-frequency sound absorption with the maximum absorption coefficient and fractional bandwidth of 0.97 and 12.9%, respectively, which mainly arises from the high thermal-viscous loss around the circular hole and four narrow slits of the unit. More interestingly, by combining 4 units with different diameters of the circular hole, we further enhance the fractional bandwidth of the compound unit to 18.7%. Our work provides a route to design ultra-thin broadband sound absorbers by artificial Mie resonances, showing great potential in practical applications of low-frequency noise control and architectural acoustics.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6330
Author(s):  
Asif I. Omi ◽  
Rakibul Islam ◽  
Mohammad A. Maktoomi ◽  
Christine Zakzewski ◽  
Praveen Sekhar

In this paper, a novel analytical design technique is presented to implement a coupled-line wideband Wilkinson power divider (WPD). The configuration of the WPD is comprised of three distinct coupled-line and three isolation resistors. A comprehensive theoretical analysis is conducted to arrive at a set of completely new and rigorous design equations utilizing the dual-band behavior of commensurate transmission lines. Further, the corresponding S-parameters equations are also derived, which determine the wideband capability of the proposed WPD. To validate the proposed design concept, a prototype working at the resonance frequencies of 0.9 GHz and 1.8 GHz is designed and fabricated using 60 mils thick Rogers’ RO4003C substrate. The measured result of the fabricated prototype exhibits an excellent input return loss > 16.4 dB, output return loss > 15 dB, insertion loss < 3.30 dB and a remarkable isolation > 22 dB within the band and with a 15 dB and 10 dB references provide a fractional bandwidth of 110% and 141%, respectively.


Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2315
Author(s):  
Mirosław Magnuski ◽  
Dariusz Wójcik ◽  
Maciej Surma ◽  
Artur Noga

This article presents a novel compact widely tunable bandpass filter. The filter consists of two resonators that are double-coupled, inductively, where the coupling inductances are elements of the input and output networks. The application of double-coupling enabled the transmission zero next to the upper cutoff frequency. This makes the filter useful for applications in preselector networks used in receiving systems with a low to intermediate frequency with the desired channel frequency lower than the image channel frequency. The article shows the practical realisation of the varactor-tuned example filter fabricated as a microstrip planar network of an overall size of 0.03λg × 0.045λg. The tuning range of the proposed filter is from 410 MHz to 880 MHz with the fractional bandwidth equal to 7.5–8.1% and an in-band insertion loss better than −3.4 dB. The achieved IP3 value exceeds 17.5 dBm.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6119
Author(s):  
Donghyun Kim ◽  
Hayeong Shim ◽  
Changmin Oh ◽  
Kyungseop Kim ◽  
Heeseon Seo ◽  
...  

Cymbal transducers are frequently used as an array rather than a single element because of their high quality factor and low energy conversion efficiency. When used as an array, cymbal transducers are likely to have a big change in their frequency characteristics due to the interaction with neighboring elements. In this study, we designed an array pattern of cymbal transducers to achieve a wide frequency bandwidth using this property. First, cymbal transducers with specific center frequencies were designed. Next, a 2 × 2 planar array was constructed with the designed transducers, where dielectric polarity directions of the transducers were divided into two cases (i.e., same and different). For the array, the effect of the difference in the center frequencies and the spacing between the transducers on the acoustic characteristics of the entire array was analyzed. Based on the results, the structural pattern of the array was optimized to have the maximum fractional bandwidth while maintaining the transmitting voltage response over a given requirement. The design validity was verified by making cymbal array prototypes, followed by measuring their performances and comparing them with that of the design.


Sign in / Sign up

Export Citation Format

Share Document