ka band
Recently Published Documents





Mekala Harinath Reddy ◽  
Chunwei Min ◽  
Nick Howland ◽  
Nick R. Potts

2022 ◽  
Vol 355 ◽  
pp. 03046
Zheng Liu ◽  
Fu-an Sun ◽  
Bin Zhou

The sea atmosphere environment will affect the Ka frequency channel in TT&C. Firstly, this paper briefly introduces the Marine atmospheric environment. Attenuation models of water vapor solubility and rainfall intensity are established. The variation characteristics of atmospheric environment and the estimation method of rainfall intensity are studied. Finally, the influence of Marine atmosphere on Ka-band channel is simulated and analyzed. The simulation results show that different elevation angles have different effects on Ka-band channels. The influence result decreases gradually with the elevation Angle increasing.

L. Pace ◽  
P. E. Longhi ◽  
W. Ciccognani ◽  
S. Colangeli ◽  
F. Vitulli ◽  

Amrees Pandey ◽  
Aditya Kumar Singh ◽  
Sweta Singh ◽  
Rajeev Singh
Ka Band ◽  

Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 37
Kun Deng ◽  
Fuxing Yang ◽  
Yucheng Wang ◽  
Chengqi Lai ◽  
Ke Han

In this paper a high capacitance ratio and low actuation voltage RF MEMS switch is designed and fabricated for Ka band RF front-ends application. The metal-insulator-metal (MIM) capacitors is employed on a signal line to improve the capacitance ratio, which will not degrade the switch reliability. To reduce the actuation voltage, a low spring constant bending folding beam and bilateral drop-down electrodes are designed in the MEMS switch. The paper analyzes the switch pull-in model and deduces the elastic coefficient calculation equation, which is consistent with the simulation results. The measured results indicated that, for the proposed MEMS switch with a gap of 2 μm, the insertion loss is better than −0.5 dB and the isolation is more than −20 dB from 25 to 35 GHz with an actuation voltage of 15.8 V. From the fitted results, the up-state capacitance is 6.5 fF, down-state capacitance is 4.3 pF, and capacitance ratios is 162. Compared with traditional MEMS capacitive switches with dielectric material Si3N4, the proposed MEMS switch exhibits high on/off capacitance ratios of 162 and low actuation voltage.

Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 84
Anna Piacibello ◽  
Vittorio Camarchia

This paper discusses some of the design choices underlying the development of watt-level integrated Doherty power amplifiers in the K and Ka band, focusing on compound semiconductor technologies. The key aspect of on-chip power combination is discussed, presenting and comparing some of the possible alternatives. Then, the impact on the achievable bandwidth and performance of different parameters is quantified, adopting an approximate analysis, which focuses on the Doherty output combiner and allows estimating the non-linear performance of the amplifier thanks to some simplifying assumptions, without requiring a full, non-linear model of the active devices. Two sample GaAs and GaN technologies are compared first, considering parameters that are representative of the currently available commercial processes, and then several power combination strategies are analyzed, adopting the GaN technology, which is currently the only one that allows achieving the power levels required by the applications directly on chip. Finally, some hints as to the impact of the output parasitic effects of the transistors on the presented analysis are given.

Sign in / Sign up

Export Citation Format

Share Document