compact antenna
Recently Published Documents


TOTAL DOCUMENTS

463
(FIVE YEARS 123)

H-INDEX

22
(FIVE YEARS 3)

2022 ◽  
Vol 71 (2) ◽  
pp. 2383-2399
Author(s):  
Md. Mushfiqur Rahman ◽  
Md. Shabiul Islam ◽  
Mohammad Tariqul Islam ◽  
Samir Salem Al-Bawri ◽  
Wong Hin Yong

2022 ◽  
Vol 2161 (1) ◽  
pp. 012012
Author(s):  
Avi Sharma ◽  
Pramod Kumar

Abstract A flexible microstrip antenna is a compact antenna that can be coupled with the skin. However, such antennas require to be coupled with an intermediate matching liquid medium which makes the antenna bulky, complicated, and expensive. Body area network devices are wearable wireless devices/sensors that are used to get the information of a patient’s health in terms of physiological changes irrespective of location. A flexible layer made of Polyethylene is chosen as the substrate and a copper patch is levied upon it. This substrate layer lies in between two adhesive layers (GIL GML 1000).In this paper, flexible antennas are designed and simulated for Body area networks (BANs). The S11 parameter, VSWR value, Gain, and the radiation pattern of the antennas are compared. The polyethylene substrate is highly flexible and lightweight; therefore it would be an ideal material to be used as the substrate of the required antenna.


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 35
Author(s):  
Haider Ali ◽  
Xin-Cheng Ren ◽  
Inam Bari ◽  
Muhammad Adil Bashir ◽  
Anas M. Hashmi ◽  
...  

In this article, a compact four-port MIMO antenna system resonating from 4.7–5.1 GHz on −6 dB criteria is discussed. The proposed antennas are arranged in a perpendicular manner providing diversity with good isolation characteristics. The proposed antenna was fabricated and designed on a commercially available low-cost FR-4 substrate with a relative permittivity of 4.4. The total size of the antenna is 40 × 40 mm2, and a minimum isolation of 25 dB was observed at most nearby resonating elements. The proposed antenna was fabricated and tested at an in-house facility, and the measured results agree well with the simulations. The MIMO antenna characteristics, such as the envelope correlation coefficient (ECC) among any two radiating elements, have been found to be less than 0.1, and the diversity gain (DG) value evaluated showed that the proposed antenna is well designed. Furthermore, the SAR analysis showed that the desired antenna system is safe for users, with a value of 0.94 W/Kg. The channel capacity (cc) was found to be 18.7 bps/Hz, approximately 2.7 times more than SISO systems. Through its robust and reliable performance and its peak gain of 2.8 dBi, the proposed compact antenna is a good candidate for future 5G devices.


2021 ◽  
Author(s):  
Orlando Francois Gonzales Palacios ◽  
Ricardo Erick Diaz Vargas ◽  
Patrick H. Stakem ◽  
Carlos Enrique Arellano Ramirez

This paper presents the design and simulation of a Koch curve fractal antenna, developed according to the second iteration of the Koch snowflake fractal for S-band, C-band, X-band and Ku-band. The simulated antenna shows good performance for the operating frequencies and desirable gain, bandwidth and VSWR parameters. Being a compact antenna, it has a size, geometry and characteristics that go in accord with the CubeSat’s structure standards. The antenna was fabricated on a 1.5 mm thick FR-4 substrate. The VSWR achieved values are lower than 1.4 for the frequencies used (2.1 GHz to 2.4 GHz and 7.4 GHz to 8.9 GHz) with a simulated omnidirectional radiation pattern. A maximum gain of 6.8 dBi was achieved. As this antenna works optimally in the S, C and X bands, it is adequate for deep space applications, especially in low-power consumption systems. This approach would be ideal for constellations of Cubesat explorers.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2967
Author(s):  
Nur Fatihah Ibrahim ◽  
Philip Ayiku Dzabletey ◽  
Hyoungsoo Kim ◽  
Jae-Young Chung

In this paper, a dual-band conductive textile-based wearable antenna operating at LoRa-868 MHz and BLE-2.4 GHz is presented. The proposed antenna is intended for accurate geolocation, tracking and communication applications in the military, industrial and telemedicine industries. The low-profile patch antenna is suitable for integrating into clothing. It is composed of three textile layers: top and bottom silver-ink-printed polystyrene fabrics, and a neoprene substrate. To utilize the flexible and restorable properties of these textile materials, the proposed antenna is directly fed by a flexible cable using an aperture-coupled feeding technique. This method not only eliminates the use of the conventional, bulky, and metallic SMA connector but also introduces a secondary resonance at 2.4 GHz, enabling the dual-band property. Using a thin coaxial cable fixed on the aperture slot for proximity coupling, a compact antenna size of 150 mm2 is obtained that can easily be attached and detached on existing cloths. The proposed structure has been fabricated and measured in an anechoic chamber to verify the performance. Measured gain of 3.28 dBi and 3.25 dBi was realized for LoRa and BLE at an antenna size of 0.61 λg × 0.61 λg × 0.012 λg (where λg is guided wavelength at 868 MHz) with a front-to-back ratio (FBR) of greater than 10 dBi.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2870
Author(s):  
Hijab Zahra ◽  
Musa Hussain ◽  
Syeda Iffat Naqvi ◽  
Syed Muzahir Abbas ◽  
Subhas Mukhopadhyay

A simple and compact antenna with a switchable beam for millimeter-wave communication is proposed in this paper. The antenna has a planar structure, and the design evolution is discussed. The beam switching functionality was achieved by incorporating two PIN diodes in the ground plane of the antenna. By switching ON either of the PIN diodes, the inverted L-shaped stub becomes connected to the ground plane and behaves as a cavity, which causes the dispersion of the radiation pattern. Therefore, a wide-angle (±18∘) beam-switching property can be achieved using a simple and low-cost technique, without the necessity to implement additional conventional circuits. The proposed antenna is characterized by a good performance in terms of return loss, bandwidth, measured gain up to 7.95 dB, and radiation efficiency up to 84%, making it a proper candidate for IoT technology and millimeter-wave 5G devices.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jeremiah O. Abolade ◽  
Dominic B. O. Konditi

A compact dual-band ram horn-like folded antenna is presented in this work. The antenna is based on a ram horn-like folded strip, asymmetric microstrip feeding (AMF) technique, partial ground, and protruding stub at the ground plane. The dimension of the proposed antenna is 0.11 λ g  × 0.17 λ g at 2.3 GHz (10 × 15 mm2). The proposed shape is achieved through the combination of two circular arcs with different radii. The antenna operates at 2.3 GHz and 5.8 GHz with a measured bandwidth of 100 MHz and 820 MHz, a gain of 0.62 dBi and 2.2 dBi, and radiation efficiency of 93.67% and 99.87%, respectively. The prototype of the proposed antenna is fabricated and measured. The measured result shows a good agreement with the simulated result. The parametric study of the proposed antenna is performed and results are presented. Besides, a comparative study between the antennas proposed in this work and the state of the art is performed and presented. The proposed antenna is comparatively small in size than all the recently reported works in the literature while ensuring good radiation characteristics. Therefore, the antenna proposed in this work is a better candidate for future portable sub-6GHz fifth-generation (5G), Advance Long-term Evolution (LTE-A), Worldwide Interoperability for Microwave Access (WiMAX), and Wireless Local Area Network (WLAN) applications.


Author(s):  
M. Karthikeyan ◽  
R. Sitharthan ◽  
Tanweer Ali ◽  
Sameena Pathan ◽  
Jaume Anguera ◽  
...  

AbstractA compact triple band antenna with stacked T-shaped strips inside a rectangular ring monopole has been proposed. This novel structure with a slot in the defected ground achieves triple band opration i.e. 2.47–2.77 GHz, 3.3–3.7 GHz and 5.10–6.62 GHz. These bands find application in important wireless communication standards like WiMAX (3.3–3.8 GHz, and 5.25–5.85 GHz, WLAN (2.4 G-2.5 GHz, 5.1–5.3 GHz, and 5.72–5.85 GHz). The antenna is printed on a FR-4 substrate with an overall dimension of $$33 \times 17 \times 1.6 \;{\text{mm}}^{3}$$ 33 × 17 × 1.6 mm 3 . An impedance bandwidth of 11% (2.47–2.77 GHz), 11% (3.3–3.7 GHz) and 25% (5.10–6.62 GHz) is obtained. A good conjunction between the simulated and measured results is inferred from the antenna design analysis.


Sign in / Sign up

Export Citation Format

Share Document