Effective Elastic Properties of 3-Phase Particle Reinforced Composites with Randomly Dispersed Elastic Spherical Particles of Different Sizes

2021 ◽  
Vol 129 (1) ◽  
pp. 1-24
Author(s):  
Yu-Fu Ko ◽  
Jiann-Wen Woody Ju
2017 ◽  
Vol 33 (6) ◽  
pp. 789-796 ◽  
Author(s):  
L. C. Bian ◽  
W. Liu ◽  
J. Pan

AbstractIn this paper, the effective properties of particle-reinforced composites with a weakened interphase are investigated. The particle and interphase are regarded as an equivalent-inclusion, and the interphase zone around the particle is modeled as a linear elastic spring layer. A modified micro-mechanics model is proposed to obtain the effective elastic modulus. Moreover, a statistical debonding criterion is proposed to characterize the varying probability of the evolution of interphase debonding. Numerical examples are considered to illustrate the effect of imperfect interphases on the effective properties of particle-reinforced composites. It is found that the effective elastic properties obtained in the present work are in a good agreement with the existing data from the literatures.


Author(s):  
D. Cojocaru ◽  
A. M. Karlsson

A computational scheme for estimating the effective elastic properties of a particle reinforced matrix is investigated. The randomly distributed same-sized spherical particles are assumed to result in a composite material that is macroscopically isotropic. The scheme results in a computational efficient method to establish the correct bulk and shear moduli by representing the three-dimensional (3D) structure in a two-dimensional configuration. To this end, the statistically equivalent area fraction is defined in this work, which depends on two parameters: the particle volume fraction and the number of particles in the 3D volume element. We suggest that using the statistically equivalent area fraction, introduced and defined in this work, is an efficient way to obtain the effective elastic properties of an isotropic media containing randomly dispersed same-size spherical particles.


Sign in / Sign up

Export Citation Format

Share Document