scholarly journals Sanguinarine Decreases Cell Stiffness and Traction Force and Inhibits the Reactivity of Airway Smooth Muscle Cells in Culture

2019 ◽  
Vol 16 (2) ◽  
pp. 141-151 ◽  
Author(s):  
Mingzhi Luo ◽  
Kai Ni ◽  
Peili Yu ◽  
Yang Jin ◽  
Lei Liu ◽  
...  
1995 ◽  
Vol 269 (4) ◽  
pp. L514-L519 ◽  
Author(s):  
P. R. Johnson ◽  
C. L. Armour ◽  
D. Carey ◽  
J. L. Black

An increase in the bulk of the airway smooth muscle is a characteristic of asthma. Much of the research investigating the mechanisms of this increase in muscle has focused on mediators that are mitogenic for smooth muscle, while relatively few studies have focused on mediators inhibiting mitogenesis. In this study we have examined the effects of two mediators proposed as regulators of smooth muscle proliferation, namely heparin and prostaglandin (PG) E2, on human airway smooth muscle cells in culture stimulated with 1, 2.5, 5, and 10% fetal bovine serum (FBS) and platelet-derived growth factor AB (PDGF), 50 ng/ml. PGE2 had a biphasic effect on DNA synthesis in the presence of 1% FBS, with 10(-6) M causing inhibition and 10(-7) M causing an increase in DNA synthesis. PGE2 caused inhibition of DNA synthesis in the presence of 2.5, 5, and 10% FBS. Heparin (10 and 100 U/ml) caused an inhibition of DNA synthesis induced by 1% FBS, while 100 U/ml inhibited DNA synthesis induced by 5 and 10% FBS. PGE2 (10(-8), 10(-7), and 10(-6) M) inhibited the DNA synthesis induced by PDGF, while heparin (1, 10, and 100 U/ml) had no effect. These results indicate that both PGE2 and heparin may have a role in the control of human airway smooth muscle cell growth.


1996 ◽  
Vol 271 (5) ◽  
pp. C1660-C1668 ◽  
Author(s):  
R. D. Hubmayr ◽  
S. A. Shore ◽  
J. J. Fredberg ◽  
E. Planus ◽  
R. A. Panettieri ◽  
...  

Using magnetic twisting cytometry (MTC), we measured the cytoskeletal stiffness of adherent human airway smooth muscle (HASM) cells. We hypothesized that modulation of actin-myosin interactions by application of contractile agonists would induce changes in cytoskeletal stiffness. In cells plated on high-density collagen, bradykinin (10(-6) M) and histamine (10(-4) M) increased stiffness by 85 +/- 15 and 68 +/- 16%, respectively. Increases in cell stiffness were also consistently observed after acetylcholine, substance P, and KCl. The bronchodilator agonists isoproterenol, prostaglandin E2, forskolin, dibutryl adenosine 3', 5'-cyclic monophosphate, and 8-bromoguanosine 3', 5'-cyclic monophosphate each caused a dose-dependent decrease in cell stiffness in unstimulated as well as bradykinin-treated cells. HASM cells plated on high-density collagen were stiffer than cells plated on low-density collagen (126 +/- 16 vs. 43 +/- 3 dyn/cm2) and developed more pronounced increases in stiffness in response to bradykinin as well as more pronounced decreases in stiffness in response to isoproterenol. These results are consistent with the hypothesis that modulation of actin-myosin interactions by application of contractile agonists causes changes in cytoskeletal stiffness of HASM cells. MTC may be a valuable tool for evaluating the mechanisms of pharmacomechanical coupling in airway smooth muscle cells in culture.


Author(s):  
Yue Wang ◽  
Yifan Zhang ◽  
Ming Zhang ◽  
Jingjing Li ◽  
Yan Pan ◽  
...  

Airway hyperresponsiveness (AHR) is one of the main pathologic features of bronchial asthma, which is largely attributable to enhanced contractile response of asthmatic airway smooth muscle. Although β2 adrenergic receptor agonists are commonly used to relax airway smooth muscle for treating AHR, there are side effects such as desensitization of long-term use. Therefore, it is desirable to develop alternative relaxant for airway smooth muscle, preferably based on natural products. One potential candidate is the inexpensive and widely available natural herb saponins of Dioscorea nipponicae (SDN), which has recently been reported to suppress the level of inflammatory factor IL-17A in ovalbumin-induced mice, thereby alleviating the inflammation symptoms of asthma. Here, we evaluated the biomechanical effect of SDN on IL-17A-mediated changes of cultured human airway smooth muscle cells (HASMCs) in vitro. The stiffness and traction force of the cells were measured by optical magnetic twisting cytometry (OMTC), and Fourier transform traction microscopy (FTTM), respectively. The cell proliferation was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetry, the cell migration was measured by cell scratch test, and the changes of cell cytoskeleton were assessed by laser confocal microscopy. We found that the stiffness and traction force of HASMCs were enhanced along with the increases of IL-17A concentration and exposure time, and SDN treatment dose-dependently reduced these IL-17A-induced changes in cell mechanical properties. Furthermore, SDN alleviated IL-17A-mediated effects on HASMCs proliferation, migration, and cytoskeleton remodeling. These results demonstrate that SDN could potentially be a novel drug candidate as bronchodilator for treating asthma-associated AHR.


2007 ◽  
Vol 109 (1) ◽  
pp. 134-139 ◽  
Author(s):  
M. Chaabi ◽  
V. Freund-Michel ◽  
N. Frossard ◽  
A. Randriantsoa ◽  
R. Andriantsitohaina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document